
Identification of PsaA/PsaB gene family in tobacco and its response to stress
CHANG Yongchun, YIN Guoying, YAN Yibo, GUO Yushuang, YU Wangjie, PENG Yihong, WU Yuxiang
Identification of PsaA/PsaB gene family in tobacco and its response to stress
PsaA and PsaB are central proteins in photosystem Ⅰ, and play important roles in plant photosynthesis and stress regulation. Tobacco (Nicotiana tabacum L.) is a model crop for plant functional genomics research, while there are few studies on the functions of PsaA and PsaB genes. In order to understand the response of tobacco PsaA/PsaB genes to stress, the PsaA/PsaB gene family in tobacco genome were identified, and their physicochemical properties, subcellular localization, phylogenetic evolution, motifs and promoter regulatory elements were analyzed. The results showed that there are 27 PsaA/PsaB genes in tobacco. Compared with Arabidopsis thaliana, the tobacco PsaA/PsaB gene family undergone significant expansion and can be classified into three subfamilies based on their phylogenetic and structural features. The promoters of tobacco PsaA/PsaB genes contain numerous cis-regulatory elements responsive to light, low temperature, drought and plant hormones. RT-qPCR analysis revealed that most tobacco PsaA/PsaB genes were up-regulated under low temperature stress (8 up-regulated genes) and down-regulated under polyethylene glycol and jasmonic acid methyl ester stresses(8 and 7 down-regulated genes respectively). After potato virus Y(PVY) and tobacco mosaic virus (TMV) infection, the expression of most tobacco PsaA/PsaB genes were down-regulated. The down-regulated genes in the lower mesophyll and vein tissues were 19 and 17 after PVY infection, and 9 genes were down-regulated after TMV infection. In conclusion, tobacco PsaA/PsaB genes are involved in the response process of tobacco to various abiotic stresses, and the study results provide a reference for further exploring the role of PsaA/PsaB genes in regulating plant response to stress.
tobacco / PsaA/PsaB gene family / PEG response / MeJA response / drought stress / low temperature stress / TMV response / PVY response {{custom_keyword}} /
Tab.1 Quantitative primers of PsaA/PsaB gene family in tobacco表1 烟草PsaA/PsaB基因家族定量引物 |
基因名称 | 上游引物 (5'-3') | 下游引物 (5'-3') |
---|---|---|
Nta_PsaA/PsaB_1 | CCAGACCGGGTCATTTCTCA | TTGGATCACTTAGCCACGCT |
Nta_PsaA/PsaB_2 | CGCCGAGTATTGAGGAGGAC | CGCTCGGCCAAAGAAAGATG |
Nta_PsaA/PsaB_3 | TAAATGGTGACGTAGGCGGG | AATACCCCAGTTGGTCGCTG |
Nta_PsaA/PsaB_4 | TGTTTGCCGGAACCAGAAGT | CCCGCCTACGTCACCATTTA |
Nta_PsaA/PsaB_5 | GCAGGCGAGACTAAGCAGAA | AGTCCTAGTAGCCCTGCCAA |
Nta_PsaA/PsaB_6 | GGGGGTTTCCGAGCAATACA | GTACTTGATGCCCCACCCAA |
Nta_PsaA/PsaB_8 | TATCCCAGTTTTGCCGAGGG | GCATGCCATGACGTCGTTAG |
Nta_PsaA/PsaB_9 | TTCTGGAAAGGGAACGCGAA | CAATCCAAGGCACCATCCCT |
Nta_PsaA/PsaB_10 | TCCAATCGGGCTACCTCTGA | TACTTGATGCCCAGCCCAAG |
Nta_PsaA/PsaB_11 | TTCTGGAAAGGGAACGCGAA | CGGTCTACACACACATGGCT |
Nta_PsaA/PsaB_13 | CCATGGTCAGCTTGAGGGAG | CCTTGTCCCACCAGATCCAC |
Nta_PsaA/PsaB_14 | CCATGGTCAGCTTGAGGGAG | CCTTGTCCCACCAGATCCAC |
Nta_PsaA/PsaB_15 | TCCCCAAAAAGTGGATCCCG | AACCCATGGTTATGGACCCG |
Nta_PsaA/PsaB_16 | TTTTTCGTGCAATGGCCCAG | CATCCATGCCCAAGCCGATA |
Nta_PsaA/PsaB_17 | TCTTCAACGAGTGGTCCAGC | ATGTCACAAGTACCGCCTCG |
Nta_PsaA/PsaB_18 | GACGAGGCGGTACTTGTGAT | ACATCCATGCCCAAACCGAT |
Nta_PsaA/PsaB_19 | ACCCATGCTTTAGCACCTGG | ACGGGAACTGCGAGCAAATA |
Nta_PsaA/PsaB_20 | TCGGTTTGGGCATGGATGTT | GGCCAAAGGTGTGTGTTCAT |
Nta_PsaA/PsaB_21 | CAAGGCTTAGCTCAGGACCC | GCCGGTTGACCAAAATGAGG |
Nta_PsaA/PsaB_22 | CTCCGAGAGCCTTGAGCATT | CGACGAGTAGTGGGGTCTTG |
Nta_PsaA/PsaB_23 | ACAGCGGTTGGATGGTTAGG | CCGTTGAGTTCACCGTCGTA |
Nta_PsaA/PsaB_24 | GGGATGTTTGGGGCAGTGTA | TGCCCATAAGAAATCGCGGA |
Nta_PsaA/PsaB_25 | TTAATGGGTGGCTCCGCAAT | GGCTCTCGGCTGAATAGCAT |
Nta_PsaA/PsaB_26 | ACAGGAGCTTTTGCTCATGGA | AATCCCAGAAAGAGGCTGGC |
Nta_PsaA/PsaB_27 | ACAGGAGCTTTTGCTCATGGA | AATCCCAGAAAGAGGCTGGC |
Actin | CCTGAGGTCCTTTTCCAACCA | GGATTCCGGCAGCTTCCATT |
Tab.2 Analysis of physicochemical properties of Nta_PsaA/PsaB genes表2 烟草PsaA/PsaB基因理化性质分析 |
基因ID | 基因名称 | 氨基酸数目 | 相对分子质量 | 等电点 | 不稳定系数 | 平均亲水系数 | 基因组来源 | 染色体定位 | |
---|---|---|---|---|---|---|---|---|---|
Nitab4.5_0003175g0010.1 | Nta_PsaA/PsaB_1 | 85 | 9 827.04 | 5.75 | 31.15 | -0.193 | 叶绿体基因组 | Scf_0003175 | |
Nitab4.5_0003101g0120.1 | Nta_PsaA/PsaB_2 | 158 | 18 343.76 | 5.47 | 44.31 | -0.361 | 叶绿体基因组 | Scf_0003101 | |
Nitab4.5_0008665g0020.1 | Nta_PsaA/PsaB_3 | 363 | 41 404.48 | 8.71 | 21.28 | -0.016 | 线粒体基因组 | Scf_0008665 | |
Nitab4.5_0004822g0010.1 | Nta_PsaA/PsaB_4 | 281 | 31 826.11 | 5.07 | 39.19 | -0.096 | 叶绿体基因组 | Scf_0004822 | |
Nitab4.5_0010951g0020.1 | Nta_PsaA/PsaB_5 | 209 | 22 742.7 | 9.97 | 27.01 | 0.017 | 线粒体基因组 | Scf_0010951 | |
Nitab4.5_0001152g0890.1 | Nta_PsaA/PsaB_6 | 151 | 17 011.82 | 10 | 32.87 | 0.079 | 叶绿体基因组 | Chr_19 | |
Nitab4.5_0001783g0050.1 | Nta_PsaA/PsaB_7 | 170 | 20 055.33 | 6.65 | 33.85 | 0.01 | 叶绿体基因组 | Chr_07 | |
Nitab4.5_0023521g0010.1 | Nta_PsaA/PsaB_8 | 411 | 47 728.22 | 5.98 | 42.59 | -0.354 | 叶绿体基因组 | Scf_0023521 | |
Nitab4.5_0004100g0040.1 | Nta_PsaA/PsaB_9 | 245 | 27 739.03 | 9.84 | 32.76 | -0.282 | 线粒体基因组 | Scf_0004100 | |
Nitab4.5_0001127g0240.1 | Nta_PsaA/PsaB_10 | 245 | 27 367.9 | 9.9 | 32.16 | -0.118 | 线粒体基因组 | Chr_19 | |
Nitab4.5_0000172g0970.1 | Nta_PsaA/PsaB_11 | 392 | 43 465.54 | 9.89 | 38.54 | -0.018 | 线粒体基因组 | Chr_19 | |
Nitab4.5_0002607g0030.1 | Nta_PsaA/PsaB_12 | 124 | 13 754.87 | 5.90 | 31.31 | 0.177 | 叶绿体基因组 | Scf_0002607 | |
Nitab4.5_0000143g0310.1 | Nta_PsaA/PsaB_13 | 544 | 60 019.23 | 4.86 | 46.35 | -1.079 | 核基因组 | Chr_11 | |
Nitab4.5_0001198g0010.1 | Nta_PsaA/PsaB_14 | 544 | 59 939 | 4.86 | 45.41 | -1.092 | 核基因组 | Chr_13 | |
Nitab4.5_0001946g0030.1 | Nta_PsaA/PsaB_15 | 684 | 79 171.19 | 5.60 | 42.57 | -0.318 | 叶绿体基因组 | Scf_0001946 | |
Nitab4.5_0002446g0050.1 | Nta_PsaA/PsaB_16 | 190 | 21 196.29 | 6.64 | 15.58 | 0.175 | 叶绿体基因组 | Scf_0023295 | |
Nitab4.5_0023295g0020.1 | Nta_PsaA/PsaB_17 | 256 | 29 507.11 | 6.65 | 35.6 | 0.134 | 叶绿体基因组 | Scf_0023295 | |
Nitab4.5_0017205g0010.1 | Nta_PsaA/PsaB_18 | 134 | 15 703.24 | 6.38 | 25.9 | 0.275 | 叶绿体基因组 | Scf_0017205 | |
Nitab4.5_0023521g0020.1 | Nta_PsaA/PsaB_19 | 314 | 34 914.35 | 7.86 | 30.54 | 0.35 | 叶绿体基因组 | Scf_0023521 | |
Nitab4.5_0002607g0040.1 | Nta_PsaA/PsaB_20 | 114 | 13 443.69 | 6.15 | 25.31 | 0.347 | 叶绿体基因组 | Scf_0002607 | |
Nitab4.5_0000718g0190.1 | Nta_PsaA/PsaB_21 | 85 | 9 464.57 | 6 | 45.16 | -0.252 | 叶绿体基因组 | Chr_19 | |
Nitab4.5_0000747g0010.1 | Nta_PsaA/PsaB_22 | 333 | 37 948.05 | 6.7 | 39.86 | 0.329 | 叶绿体基因组 | Chr_09 | |
Nitab4.5_0011099g0030.1 | Nta_PsaA/PsaB_23 | 398 | 44 578.21 | 6.22 | 31.79 | 0.119 | 叶绿体基因组 | Scf_0023295 | |
Nitab4.5_0002005g0010.1 | Nta_PsaA/PsaB_24 | 316 | 35 522.1 | 6.33 | 34.19 | -0.003 | 叶绿体基因组 | Chr_17 | |
Nitab4.5_0002446g0030.1 | Nta_PsaA/PsaB_25 | 578 | 64 916.63 | 6.62 | 29.61 | 0.233 | 线粒体基因组 | Scf_0002446 | |
Nitab4.5_0006478g0040.1 | Nta_PsaA/PsaB_26 | 196 | 21 875.16 | 6.14 | 23.5 | 0.318 | 叶绿体基因组 | Scf_0006478 | |
Nitab4.5_0023295g0010.1 | Nta_PsaA/PsaB_27 | 248 | 27 879.22 | 6.39 | 27.33 | 0.281 | 叶绿体基因组 | Scf_0023295 |
Fig.4 Cis-element statistics in the promoters of Nta_PsaA/PsaB gene family图4 烟草PsaA/PsaB基因家族启动子顺式作用元件统计 注:网络版为彩图。 |
Fig.6 RT-qPCR results of Nta_PsaA/PsaB genes at 7 h after PEG stress图6 烟草PsaA/PsaB基因PEG胁迫7 h后的RT-qPCR结果 注:*与* *分别表示在P<0.05与P<0.01水平上差异显著。 |
Fig.11 RT-qPCR results of Nta_PsaA/PsaB genes in tobacco mesophyll after PVY infection图11 PVY感染后烟草叶肉中PsaA/PsaB基因RT-qPCR结果 注:*与* *分别表示在P<0.05与P<0.01水平上差异显著。 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
We have previously shown the presence in chloroplasts of sequence-specific DNA-binding proteins that interact specifically with two regions located downstream and upstream from the 5'-transcription start site of the plastid psaA-psaB-rps14 operon. As part of an effort to elucidate the regulatory mechanism of plastid transcription during plant development, we report here the purification and characterization of the chloroplast DNA-binding protein from spinach (Spinacia oleracea L. var. spinosa Ashers et Graeden) leaves that specifically recognizes sequences between positions +64 to +83 relative to the transcription start site. This DNA-binding protein has been highly purified from chloroplasts by using a combination of high-salt extraction, ammonium sulfate precipitation, heparin-agarose chromatography, and sequence-specific DNA-affinity chromatography. The protein exhibited an apparent molecular weight of 59-60 kDa on the basis of gel filtration. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Southwestern blot analysis further indicated that this DNA-binding protein is dimeric and composed of two approximately 31-kDa subunits. We discuss the properties of this protein in relation to the known chloroplast DNA-binding factors for plastid gene expression.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
郭兴启, 温孚江, 朱汉城. 烟草感染马铃薯Y病毒(PVY)后光合作用的变化规律[J]. 浙江大学学报(农业与生命科学版), 2000, 26(1):75-78.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
陈建林, 查丁石, 吴雪霞. 低温胁迫对茄子幼苗生理生化的影响[J]. 中国蔬菜, 2006(11):21-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
李晓靖, 崔海军. 低温胁迫下植物光合生理研究进展[J]. 山东林业科技, 2018, 48(6):90-94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
Chloroplast-to-nucleus retrograde signaling is essential for the coupled expression of photosynthesis-associated nuclear genes (PhANGs) and plastid genes (PhAPGs) to ensure the functional status of chloroplasts (Cp) in plants. Although various signaling components involved in the process have been identified in Arabidopsis (), the biological relevance of such coordination remains an enigma. Here, we show that the uncoupled expression of PhANGs and PhAPGs contributes to the cell death in the () mutant of Arabidopsis. A daylength-dependent increase of salicylic acid (SA) appears to rapidly up-regulate a gene encoding SIGMA FACTOR BINDING PROTEIN1 (SIB1), a transcriptional coregulator, in before the onset of cell death. The dual targeting of SIB1 to the nucleus and the Cps leads to a simultaneous up-regulation of PhANGs and down-regulation of PhAPGs. Consequently, this disrupts the stoichiometry of photosynthetic proteins, especially in PSII, resulting in the generation of the highly reactive species singlet oxygen (O) in Cps. Accordingly, inactivation of the nuclear-encoded Cp protein EXECUTER1, a putative O sensor, significantly attenuates the -conferred cell death. Together, these results provide a pathway from the SA- to the O-signaling pathway, which are intertwined via the uncoupled expression of PhANGs and PhAPGs, contributing to the lesion-mimicking cell death in.© 2019 American Society of Plant Biologists. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
孙雨桐, 刘德帅, 齐迅, 等. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11):99-109.
植物作为不可移动的生物,感知外界刺激通过改变自身信号转导对其做出反应。植物激素作为重要的信号分子,在植物应对不同生物和非生物胁迫反应中发挥作用,以调节植物生长发育并适应不断变化的环境。茉莉酸是植物体内的重要激素之一,目前它的合成途径、生理作用等已有大量研究,但对其感知环境变化并做出反应的信号转导途径以及与其他植物激素的相互作用方面的研究还有空白之处。本文主要阐述茉莉酸在调控植物生长发育、胁迫应答及其与其他植物激素的相互作用方面的研究进展。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
Drought alone causes more annual loss in crop yield than all pathogens combined. To adapt to moisture gradients in soil, plants alter their physiology, modify root growth and architecture, and close stomata on their aboveground segments. These tissue-specific responses modify the flux of cellular signals, resulting in early flowering or stunted growth and, often, reduced yield. Physiological and molecular analyses of the model plant have identified phytohormone signaling as key for regulating the response to drought or water insufficiency. Here we discuss how engineering hormone signaling in specific cells and cellular domains can facilitate improved plant responses to drought. We explore current knowledge and future questions central to the quest to produce high-yield, drought-resistant crops.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |