吡咯氮掺杂还原氧化石墨烯泡沫活化过二硫酸钠去除双酚A

左怡丹, 龙俊宏, 宋洁, 和丽金, 金华蕾, 夏丽红, 石苗, 罗利军, 戴建辉

PDF(5642 KB)
欢迎访问陕西师范大学学报(自然科学版)官方网站!
陕西师范大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (1) : 16-28. DOI: 10.15983/j.cnki.jsnu.2024202
活性材料构筑及性能研究专题

吡咯氮掺杂还原氧化石墨烯泡沫活化过二硫酸钠去除双酚A

作者信息 +

Removal of bisphenol A by pyrrole nitrogen doped reduced graphene oxide foam for peroxodisulfate activation

Author information +
History +

摘要

以吡咯为氮源,通过水热-冷冻干燥法制备易回收的氮掺杂还原氧化石墨烯泡沫(nitrogen doped reduced graphene oxide foam,N-RGF),并用于活化过二硫酸盐(peroxodisulfate,PDS)去除双酚A(bisphenol A,BPA)。利用扫描电子显微镜、X射线衍射、光电子能谱、傅里叶变换红外光谱、BET比表面积和热重分析等技术对材料的结构进行表征和分析,探究溶解性有机质和无机离子对材料性能的影响。结果表明,以吡咯为氮源制备的N-RGF材料具有孔道较小且分布均匀(2~3.5 μm)、比表面积大(90.029 m2/g)、孔体积大(0.541 7 cm3/g)、石墨相氮含量高(4.3%)和弹性好等优点。N-RGF活化PDS降解BPA的动力学速率常数(0.008 35 min-1)是RGF(0.001 42 min-1)的5.88倍,且水中溶解性有机质和无机离子对N-RGF活化PDS降解BPA基本没有影响。活性物种捕获实验和电子顺磁共振检测结果显示单线态氧(1O2)是N-RGF活化PDS降解BPA的主要活性物种。SPE-UHPLC-MS(solid phase extraction combined with ultra-high-performance liquid chromatography-mass spectrometry)中间体检测结果显示有10个中间体,提出了可能的降解途径,且通过MCF-7细胞活力测试发现降解过程产物的雌激素活性基本消除。

Abstract

The nitrogen doped reduced graphene oxide foam (N-RGF) with excellent recyclability was prepared by hydrothermal method followed freeze drying treatment using pyrrole as nitrogen source, and was applied to activate peroxodisulfate (PDS) to remove bisphenol A (BPA). The structures of as-prepared samples were investigated by SEM, XRD, XPS, FT-IR, BET and TG techniques. The effects of dissolved organic matter (DOM) and inorganic ions on the removal of BPA by N-RGF were explored. The results showed that the N-RGF prepared using pyrrole as nitrogen source has a 3-dimensional foam structure with relatively uniform pores (2~3.5 μm), large specific surface area (90.029 m2/g) and pore volume (0.541 7 cm3/g), high graphitic nitrogen content (4.3%). Moreover, N-RGF has strong elasticity, which is beneficial for the stability and recyclability. The degradation kinetic rate constant of BPA over N-RGF (0.008 35 min-1) was 5.88 times than that of RGF (0.001 42 min-1). The DOM and inorganic ions showed little inhibiting effect on the catalytic performance of N-RGF. The reactive species capture experiment and electron paramagnetic resonance (EPR) showed that singlet oxygen (1O2) is the main active species for BPA degradation. Ten intermediates were identified by solid phase extraction combined with ultra-high-performance liquid chromatography-mass spectrometry (SPE-UHPLC-MS), and possible degradation pathways were proposed. Moreover, the estrogenic activity of treated solution was excluded by the MCF-7 estrogen activity test.

关键词

双酚A / 吡咯 / 石墨相氮 / 还原氧化石墨烯泡沫 / 过二硫酸盐活化

Key words

bisphenol A / pyrrole / graphitic nitrogen / reduced graphene oxide foam / peroxodisulfate activation

引用本文

导出引用
左怡丹 , 龙俊宏 , 宋洁 , 和丽金 , 金华蕾 , 夏丽红 , 石苗 , 罗利军 , 戴建辉. 吡咯氮掺杂还原氧化石墨烯泡沫活化过二硫酸钠去除双酚A. 陕西师范大学学报(自然科学版). 2024, 52(1): 16-28 https://doi.org/10.15983/j.cnki.jsnu.2024202
ZUO Yidan , LONG Junhong , SONG Jie , HE Lijin , JIN Hualei , XIA Lihong , SHI Miao , LUO Lijun , DAI Jianhui. Removal of bisphenol A by pyrrole nitrogen doped reduced graphene oxide foam for peroxodisulfate activation. Journal of Shaanxi Normal University(Natural Science Edition). 2024, 52(1): 16-28 https://doi.org/10.15983/j.cnki.jsnu.2024202
新污染物是一类具有生物毒性、环境持久性、生物累积性等特征的有毒有害化学物质,主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素和微塑料4大类。它们会在极低的浓度下对生态环境或人体健康造成较大危害,已经成为“十四五”生态环境保护和治理的重点。双酚A(bisphenol A,BPA)是一种典型的环境内分泌干扰物,具有弱的雌激素作用和相对较强的抗雌激素效应,长期暴露在低浓度BPA中会损害生物的生殖健康[1],其也是污水处理厂出水中雌激素效应的主要贡献者之一[2]。然而,BPA是生产聚碳酸酯等的主要原料,其制品的生产和使用会造成大量BPA进入水体。因此,研究开发新技术实现BPA新污染物的末端治理,降低新污染物环境风险,具有重要意义。
过硫酸盐(persulfate,PS)活化技术[3]是一种新型水处理技术,其可利用紫外光、热、超声、金属和非金属催化剂等活化PS产生活性物种,并通过自由基[4]、非自由基[5]和自由基/非自由基协同[6]等方式去除有机污染物。1)自由基活化过硫酸盐是目前的研究热点,其主要产生的自由基为 SO4·-。相对于·OH, SO4·-具有氧化还原电位更高(2.6~3.1 eV)、pH使用范围更广(3~11)、寿命更长(30~40 μs)、氧化/矿化能力更强等优势[4]。然而,因 SO4·-具有超强的氧化/矿化能力,会与实际水体中普遍存在的溶解性有机物(dissolved organic matter,DOM)及Cl- HCO3- CO32-、Br-等无机离子相互作用,减弱其对目标污染物的降解效率,同时可能产生毒性更大的溴代或氯代等高毒副产物[7],增加环境风险。此外, SO4·-之间的相互作用会使过硫酸盐的利用率降低,造成 SO42-的排放量增大[8],引发二次污染。2)非自由基活化PS主要是在催化剂表面产生高活性络合物、单线态氧(1O2)等活性物种或在催化剂的作用下PS直接从有机污染物中提取电子进行氧化降解[9]。与自由基活化体系中自由基迁移至水相降解污染物不同,非自由基体系中的降解反应主要发生在催化剂表面,吸附能力是影响其催化活性的关键。更为重要的是,相对于自由基活化降解有机污染物,非自由基活化降解有机污染物较为温和,它很难与实际水体中的DOM和无机离子等反应,且可选择性地降解含有富电子元素或苯环的有机污染物[10],其在处理实际水体中的有机污染物时表现出更为广阔的应用前景。例如,富电子的氧化铜可与PS结合形成活性络合物,通过非自由基反应快速降解2,4-二氯酚,与常规使用的Co2+/过一硫酸盐(PMS)自由基体系相比,其催化活性显著提升,还避免了高毒性高氯代副产物的生成[11]。目前,通过非自由基途径活化过硫酸盐的催化剂主要有碳纳米管、介孔碳和还原氧化石墨烯等碳材料,它们是良好的电子传输载体,可活化PS降解有机污染物。然而,直接利用碳材料活化过硫酸盐存在活化效率较低的问题。
还原氧化石墨烯(reduced graphene oxide,RGO)是一种比表面积大、导电性能好、易于改性的碳材料,其表面的Z字型结构及含氧官能团(如C=O)可活化过硫酸盐产生活性物种[12],但RGO活化过硫酸盐能力较弱,可通过单元素掺杂或共掺杂等方式提高其活化PS的能力,其中氮掺杂是目前非金属元素掺杂的重点方向。因氮原子与碳原子半径相近,氮掺杂后可改变RGO周围碳原子的电荷分布,使邻近的碳原子带正电,显著提高RGO的吸附能力和催化活性[13]。目前,氮掺杂的氮源有肼[14]、氨[15]、吡啶[16]、吡咯[17]、三聚氰胺[15]等。课题组前期研究结果表明利用氨水为氮源制备的氮掺杂还原氧化石墨烯泡沫(nitrogen doped reduced graphene oxide foam,N-RGF)可通过吸附/过硫酸盐活化高效去除BPA[18],但制备的N-RGF孔道不规则(1~5 μm),孔体积小(0.195 8 cm3/g),且在使用过程中易碎。聚吡咯是一种高分子聚合物,其共价结构很容易与还原氧化石墨烯(RGO)的骨架层结合。它既可以作为溶胀剂又可以作为氮源,在实现氮掺杂的同时还能有效防止RGO堆积,制得的材料具有体积更大、密度更小、弹性好等优点。另外,当吡咯作为氮掺杂原料时,吡咯环中含有的大量N原子在高温下很容易转化为石墨相N,而石墨相N是吡咯活化过硫酸盐的关键[17]。Wang等[19]利用自制的氮掺杂还原氧化石墨烯(N-RGO,120 mg/L)活化PS(0.6 mmol/L)处理水中的BPA(87 mg/L),结果表明N-RGO的吸附容量(355 mg/g)是RGO(205 mg/g)的1.75倍,N-RGO活化PS降解BPA的速率常数(0.71 min-1)是RGO(0.001 min-1)的700倍。Wang等[20]在氩气保护下高温热解还原氧化石墨烯和硫尿混合物,制得的氮硫共掺杂还原氧化石墨烯可有效活化PS(0.9 mmol/L)去除自来水和污水处理厂出水中的4-NP、4-辛基酚和BPA,去除率接近99%。Meng等[21]以聚吡咯为原料,制备了氮掺杂纳米多孔碳,其使用聚吡咯作为前驱体提高了石墨相氮含量,使纳米多孔碳的孔径变大,吸附能力大幅度提高。研究显示,目前制备的N-RGO大多为纳米片状材料,其在活化过硫酸盐降解污染物的过程中存在易流失、不易回收的问题,且在活化过硫酸盐过程中产生的高活性自由基可把大片的RGO降解为颗粒更小的RGO,带来新的环境风险[22]
还原石墨烯泡沫又称三维还原氧化石墨烯泡沫,是以单层二维蜂窝状晶格结构的还原氧化石墨烯作为基本单元、以无序堆砌方式铰接而成的三维多孔材料。除继承还原氧化石墨烯的优点外,还原氧化石墨烯泡沫还具备抗压能力强、机械性能好、密度小、易回收等优点,可广泛用于防护装备材料、油水分离材料、新型显示材料等,可解决片状还原氧化石墨烯在使用过程中可能释放至环境中带来的环境风险问题。基于此,为了制备孔道相对均匀、孔体积更大的氮掺杂还原氧化石墨烯,本文以吡咯为氮源,采用水热-冷冻干燥法制备易回收的氮掺杂还原氧化石墨烯泡沫(N-RGF),并用于活化过二硫酸盐降解双酚A。

1 材料与方法

1.1 主要试剂与材料

双酚A(BPA,≥99%),西格玛奥德里奇公司;天然石墨粉(≥99%)、乙酸乙酯(色谱纯),赛默飞世尔科技(中国)有限公司;过二硫酸钠(Na2S2O8,分析纯)、无水乙醇(≥99.7%)、甲醇(色谱纯)、乙腈(色谱纯)、吡咯(CP),上海科丰化学试剂有限公司;甲醇(分析纯)、乙醇(分析纯)、苯醌(BQ,分析纯),阿达玛斯有限公司;呋喃甲醇(FFA,≥98%),国药集团化学试剂有限公司;5,5-二甲基-1-吡咯啉-N-氮化物(DMPO)、2,2,6,6-四甲基哌啶(TEMP),罗恩试剂有限公司;乳腺癌MCF-7 细胞系,中国科学院上海生命科学研究院生物化学和细胞生物学研究所;酚红DMEM培养基、澳洲胎牛血清(FBS),赛默飞世尔科技(中国)有限公司;青霉素-链霉素溶液、MTT试剂,碧云天生物技术研究所。

1.2 氮掺杂还原氧化石墨烯泡沫的制备

首先,通过改进的Hummers方法制备氧化石墨[23]。其次,称取0.2 g氧化石墨于100 mL去离子水中,超声得到2 mg/mL氧化石墨烯(GO)溶液。量取一定体积的2 mg/mL GO溶液至烧杯中,缓慢滴加1 mL吡咯(10 s/滴),搅拌至溶液透明均匀。最后,将上述溶液转移至高压高温反应釜中,180 ℃水热反应20 h,冷却至室温,用去离子水冲洗后真空冷冻干燥(-60 ℃,48 h),制得氮掺杂还原氧化石墨烯泡沫(N-RGF)。

1.3 材料表征

利用FEI Nova Nano-SEM 450型扫描电子显微镜对所制材料的形貌进行表征;利用Rigaku TTRⅢ型X射线衍射仪对材料的晶相进行分析;利用NICOLET-IS10型傅里叶变换红外光谱仪对材料表面的官能团进行分析;利用PHI5000 Versaprobe-Ⅱ型光电子能谱仪测定材料表面的元素种类、化学状态以及各元素的含量;利用Micromerritics TriStar Model 3020型N2吸附脱附比表面积分析仪测定材料的比表面积、孔径及孔体积;利用STA449F31型热分析仪对材料的热稳定性进行分析。

1.4 活化过硫酸盐降解BPA实验

N-RGF活化过二硫酸钠(peroxodisulfate,PDS)降解BPA的实验过程[18]如下:加入0.025 g N-RGF于一定体积的10 mg/L BPA溶液中,搅拌120 min达到吸附/解吸平衡。加入适量的PDS进行活化降解BPA,每隔30 min取样1 mL,用0.45 μm的玻璃纤维膜过滤至液相瓶,采用高效液相色谱仪测定BPA含量[24]。所制材料对BPA的吸附去除率、活化PDA降解BPA的去除率(降解去除率)、总去除率和准一级降解速率分别按公式(1)、(2)、(3)和(4)进行计算。
吸附去除率=(C0-Cq)/C0×100%,
(1)
降解去除率=(Cq-Ct)/Cq×100%,
(2)
总去除率=吸附去除率+降解去除率,
(3)
准一级降解速率ln(Ct / Cq)=-κt。
(4)
式中:C0为BPA的初始质量浓度;Cq为吸附平衡时溶液中的BPA质量浓度;Ct为BPA在降解过程中任意某一时刻的质量浓度;κ为拟一级降解速率常数;t为时间,单位为min。

2 结果与讨论

2.1 材料表征与分析

2.1.1 扫描电子显微镜(SEM)分析

利用SEM对N-RGF的形貌和结构进行表征,结果如图1所示。与RGF相似[18],N-RGF也为网状泡沫三维结构,其孔径较小且分布较窄(2~3.5 μm),片层RGO相互堆积情况较少,呈展开状态。分析其原因主要是具有共价结构的聚吡咯很容易与RGO骨架层结合,可以作为溶胀剂和氮源,能够有效防止RGO堆积[25]。此外,从SEM图像可知,制备的N-RGF具有体积更大、弹性更好、密度更小的特点。
图1 N-RGF的SEM图

Fig.1 SEM images of N-RGF

Full size|PPT slide

2.1.2 X射线衍射(XRD)分析

为研究所制备材料的晶相,利用XRD对GO和N-RGF进行表征分析,结果如图2所示。从图可知,GO在2θ为13°处有1个衍射宽峰,表明氧化石墨呈无定型态。当氧化石墨烯(超声剥离氧化石墨产物)和吡咯复合,13°处的衍射峰完全消失,N-RGF在2θ为25.1°处出现宽峰。这归因于高温水热环境恢复了石墨烯表面部分π—π共轭体系,且引入吡咯后N-RGF中的含氧官能团更易失去[26]。该宽衍射峰表明N-RGF的层间距远低于氧化石墨[27],且RGO薄片之间π—π堆叠有助于形成三维网络结构。
图2 GO和N-RGF的XRD图

Fig.2 XRD patterns of GO and N-RGF

Full size|PPT slide

2.1.3 傅里叶变换红外光谱(FT-IR)分析

为研究含氧官能团的变化,对GO和N-RGF进行FT-IR分析,结果如图3所示。
图3 N-RGF和GO的FT-IR谱图

Fig.3 FT-IR spectra of N-RGF and GO

Full size|PPT slide

由图可知,GO出现有6个明显的吸收峰,其中,3 405.4 cm-1处的峰归属于羟基或表面吸附水分子的伸缩振动,1 726.1 cm-1、1 617.2 cm-1、1 398.7 cm-1、1 221.7 cm-1和1 054.1 cm-1处的峰分别归属于C=O、C=C、O—C=O、C—O—C和C—O基团的振动[28]。水热还原后,N-RGF中1 054.1 cm-1和1 726.1 cm-1处的C—O吸收峰基本消失,1 617.2 cm-1处的C=C峰强度显著增加,表明N-RGF中芳香族碳含量较高,含氧基团减少,以吡咯为氮源的氮与氧化石墨烯表面的含氧官能团发生了反应[29]

2.1.4 光电子能谱(XPS)分析

为研究N-RGF的表面化学组成和状态,探究氮掺杂类型对其活化过硫酸盐的影响,利用XPS对N-RGF进行表征和分析。从N-RGF的XPS全谱图(图4a)可知,N-RGF含有C、O、N 3种元素,质量比分别为84.1%、8.6%和7.4%。图4b为N-RGF的C 1s分峰拟合图,结果显示N-RGF中结合能位于284.5 eV、285.8 eV、287.8 eV和288.5 eV处的峰分别归属于C=C、C—OH或C—NH2、C—NR、C=O,表明高温高压水热环境可还原氧化石墨烯中大部分含氧官能团,且氮原子已掺杂至RGF中[30]图4c显示, N-RGF中结合能约为530.1 eV、531.2 eV和532.7 eV处的峰分别归属于C=O、C—O、—OH。图4d为N-RGF的N 1s分峰拟合图,结合能位于401.6 eV、399.4 eV、400.1 eV处的峰分别归属于石墨相N、吡咯N(Py—N)、酰胺基(N—C=O),其质量比分别为4.3%、2.2%和0.37%。可见,石墨氮含量最高,这有利于活化PDS降解有机污染物。这是由于石墨氮电负性较高,共价半径较小,导致相邻碳原子高不对称自旋,有利于电子转移,碳原子附近丰富的自由移动电子能够促进PDS活化[31]
图4 N-RGF的XPS全谱图(a)及C 1s(b)、O 1s(c)、N 1s(d)分峰拟合图
注:网络版为彩图。

Fig.4 XPS full spectrum (a) of N-RGF and its sub-peak fitting spectra of C 1s (b), O 1s (c) and N 1s (d)

Full size|PPT slide

2.1.5 N2吸附脱附比表面积(BET)分析

采用BET对N-RGF的比表面积和孔结构进行分析,结果如图5所示。N-RGF的吸附主要发生在相对压力小于1时,吸附脱附等温线属于Ⅱ型,且具有H3型滞后型,表明N-RGF的孔隙主要是片层结构堆积形成的大型狭缝孔,这与SEM分析结果一致(图1)。N-RGF的比表面积和孔体积分别为90.029 m2/g和0.541 7 cm3/g,大的比表面积和孔体积可提供更多的吸附位点和活化位点,有利于N-RGF活化PDS降解有机污染物。
图5 N-RGF的N2吸附脱附等温线及孔径分布

Fig.5 N2 adsorption-desorption isotherms of N-RGF and the corresponding pore size distribution curves

Full size|PPT slide

2.1.6 热重(TG)和微分热重(DTG)分析

利用TG和DTG对N-RGF的官能团结构和热稳定性进行分析,结果如图6所示。当加热温度为100 ℃时,N-RGF没有明显失重现象,表明所制材料表面未吸附大量水分子,表现出一定的疏水性,有助于N-RGF通过疏水相互作用力吸附疏水性BPA。继续升高温度至150~500 ℃,N-RGF的质量持续下降,失重28.40%,说明羧基和碳基等官能团可通过热分解生成H2O、CO和CO2[13]。当温度从100 ℃升高至180 ℃时,N-RGF失重不明显,但当升温至200 ℃时,N-RGF的质量急剧下降,这可能与N-RGF中氮和含氧官能团的分解有关[26]
图6 N-RGF热重分析

Fig.6 Thermogravimetric analysis of N-RGF

Full size|PPT slide

与本课题组前期以氨水为氮源制备的氮掺杂还原氧化石墨烯泡沫(平均孔径为1~5 μm,孔体积为0.195 8 cm3/g, 石墨相氮含量为1.09%)相比[18],本文以吡络为氮源制备的N-RGF孔径更小且分布更加均匀(2~3.5 μm)、孔体积更大(0.541 7 cm3/g)、石墨相氮含量更高(4.3%)、弹性和稳定性更好。基于此,以吡咯为氮源,采用简单水热-冷冻干燥技术制备的石墨烯基泡沫材料更适合用于吸波材料、超级电容器、油水分离材料、力学材料及环境保护领域。

2.2 吸附/活化性能分析

2.2.1 N-RGF制备条件的优化

图7为不同吡咯加入量、水热温度和水热时间对N-RGF活化PDS去除BPA的影响,实验条件为0.5 g/L催化剂、0.1 g/L PDS、BPA初始质量浓度为10 mg/L。图7a为不同吡咯加入量所制备的N-RGF活化PDS去除BPA的时间曲线。当氮掺杂量(通过吡咯加入量折算得到)从2.5%增加至7.5%时,N-RGF对BPA的总去除率从62.55%增加至82.64%;氮掺杂量继续增加至15.0%,总去除率反而降至62.41%,说明适量氮掺杂可有效提高N-RGF活化PDS降解BPA的能力,但吡咯加入过量不仅会使吡咯聚至N-RGF表面,堵塞N-RGF的孔道,减少其活性位点,还会减少N-RGF的含量[32]图7b为不同水热反应时间制备的N-RGF活化PDS去除BPA的时间曲线。当水热反应时间从12 h增加到20 h时,BPA总去除率从56.83%增加至80.50%,继续增加水热反应时间至28 h,总去除率降至47.55%。图7c为不同水热反应温度制备的N-RGF活化PDS去除BPA的时间曲线。当水热温度从140 ℃增加到180 ℃时,N-RGF对BPA的总去除率从73.40%增加至81.56%,继续升温至220 ℃,总去除率降至63.70%,主要原因可能是高水热温度会造成N-RGF孔结构坍陷,减少活性位点[33]。因此,N-RGF的最佳制备条件为氮掺杂量7.5%,180 ℃水热反应20 h。
图7 不同氮掺杂量(a)、水热反应时间(b)和水热反应温度(c)制备的N-RGF活化PDS去除BPA的性能曲线
注:横坐标0之前的数据代表吸附部分。网络版为彩图。

Fig.7 Effects of different N doping amounts (a), hydrothermal reaction times (b) and hydrothermal reaction temperatures (c) on the removal of BPA by N-RGF activated PDS

Full size|PPT slide

2.2.2 N-RGF活化PDS降解BPA条件的优化

为明确N-RGF活化PDS降解BPA的最优条件,测试不同pH值和不同PDS质量浓度对去除BPA的影响,其中BPA初始质量浓度为10 mg/L,结果如图8所示。图8a为不同初始pH值对N-RGF活化PDS去除BPA的影响。当溶液初始pH值从2增加至6时,BPA总去除率从66.30%增加至77.30%,当溶液初始pH值继续增加至10时,BPA总去除率降至63.59%,表明弱酸和中性条件更有利于N-RGF活化PDS去除BPA。弱碱条件下,BPA以二价阴离子的形式(pH值大于9)存在,与带负电的N-RGF之间存在相互排斥作用,减少了对BPA的吸附去除[34]图8b为不同PDS质量浓度对N-RGF活化PDS去除BPA的影响。当PDS质量浓度从0.05 g/L增加至0.10 g/L时,BPA总去除率从60.42%增加至82.64%,继续增加PDS至0.30 g/L时,BPA总去除率降至67.62%。其主要原因是N-RGF活化PDS主要发生在催化剂表面,是由氮掺杂后邻近带正电的碳原子活性位点决定的[35],随着PDS质量浓度的增加,带正电的碳原子吸附过二硫酸根阴离子的量也会增加,BPA的降解去除率将增加;但当催化剂表面的活性位点已被完全占有,进一步增大PDS的质量浓度不会再增加产生的活性物种。因此,N-RGF活化PDS降解BPA的最优条件为溶液初始pH值为6,PDS质量浓度为0.1 g/L。
图8 不同pH值(a)和PDS质量浓度(b)对N-RGF活化PDS去除BPA的影响
注:横坐标0之前的数据代表吸附部分。网络版为彩图。

Fig.8 Effects of different pH values (a) and PDS amounts (b) on the removal of BPA by N-RGF activated PDS

Full size|PPT slide

2.2.3 性能评价

对RGF/PDS、N-RGF/PDS和PDS体系降解BPA的性能进行比较。活化PDS 120 min时,RGF和N-RGF对BPA的吸附去除率分别为48.29%和48.43%,降解去除率分别为8.47%和34.22%,总去除率分别为56.76%和82.64%(图9a)。动力学研究进一步显示(图9b),RGF和N-RGF活化PDS对BPA的拟一级降解动力学常数分别为0.001 42 min-1和0.008 35 min-1,N-RGF的催化活性是RGF的5.88倍。
图9 RGF/PDS、N-RGF/PDS和PDS体系降解BPA的性能比较(a)及相应的伪一级动力学拟合曲线(b)
注:横坐标0之前的数据代表吸附部分。网络版为彩图。

Fig.9 BPA removal performance comparison among RGF/PDS, N-RGF/PDS and PDS systems (a), and their corresponding first-order plots (b)

Full size|PPT slide

PDS加入后,RGF和N-RGF对BPA的去除均有所提高,说明RGF和N-RGF均能活化PDS降解BPA。这主要是因为RGF中的含氧官能团(C=O)和Z字型结构均可活化PDS产生活性物种降解BPA。与未掺杂的RGF相比,N-RGF活化PDS降解BPA的能力显著增加,主要原因是通过水热反应可以把吡咯中的氮原子引入RGF骨架,改变RGF的电子结构和孔结构,特别是邻近氮原子的碳原子将带正电,它一方面可以通过静电引力和π—π相互作用力分别吸引过二硫酸根阴离子和疏水性BPA,另一方面能作为导体使吸附至其表面的PDS直接从BPA中提取电子,实现PDS的高效氧化降解。在120 min时,PDS对BPA的降解去除率仅为12.65%,降解动力学常数为0.001 07 min-1,说明PDS对BPA的氧化能力很弱,可通过本实验制备的N-RGF有效活化PDS,快速降解BPA。

2.3 BPA去除机理研究

2.3.1 活性物种分析

为探究N-RGF去除BPA的机理,首先进行活性物种捕获实验[24],确定去除BPA的主要活性物种。在吸附/解吸附平衡时,在体系中分别加入甲醇、苯醌、呋喃甲醇以捕获SO4·-、·OH、· O2-1O2等活性物种,结果如图10所示。未添加任何捕获剂时,N-RGF对BPA的吸附去除率、降解去除率和总去除率分别为49.38%、29.74%和79.12%。当加入甲醇时,吸附去除率、降解去除率和总去除率分别为49.52%、28.11%和77.63%,基本保持不变,说明体系中基本没有 SO4·-和·OH。同理,在体系中加入苯醌时,吸附去除率、降解去除率和总去除率分别为49.06%、25.24%和74.3%,稍有下降,说明降解体系中很少或基本不产生· O2-。然而,当加入呋喃甲醇时,吸附去除率为48.64%,基本保持不变,但降解去除率从29.74%下降至9.38%,下降幅度达20.36%,说明1O2是降解去除BPA的主要活性物种。进一步利用EPR测定DMPO-SO4和DMPO-OH,均未检测到SO4·-和·OH,但以TEMP作为自旋捕获剂时(图10c),明显观察到1个较强的TEMP-1O2三重态信号峰,其在磁场强度为3 493.8 G时信号最高,进一步证明体系中有1O2存在[36]1O2产生的主要原因可能是:1)N-RGF中的石墨氮改变了相邻碳原子的电荷分布[37],使邻近氮原子的碳原子带正电,并通过静电引力吸引带负电的过二硫酸根负离子活化PDS产生1O2;2)N-RGF中的含氧官能团(如C=O、C—OH)和Z字型边缘结构可活化PDS产生1O2
图10 活性物种捕获实验(a)及DMPO(b)和TEMP(c)的EPR图谱

Fig.10 Reactive species capture experiment (a) and EPR spectra of DMPO (b) and TEMP (c)

Full size|PPT slide

基于以上分析,N-RGF活化PDS去除BPA的示意图如图11所示。首先,因为N-RGF中有sp2杂化碳构型(C=C)的恢复以及N-RGF与BPA之间的强π—π相互作用力或疏水相互作用力,水相中BPA分子优先吸附至催化剂表面,实现BPA的吸附去除。其次,N-RGF通过以上2种方式活化PDS产生1O2实现BPA的降解。再次,在N-RGF催化剂的介导下,PDS可直接从吸附至催化剂表面的BPA分子中提取电子进行氧化降解[38]
图11 N-RGF活化PDS去除BPA机理图
注:网络版为彩图。

Fig.11 BPA removal mechanism diagram by N-RGF activated PDS

Full size|PPT slide

2.3.2 降解中间体检测及降解途径分析

新污染物降解中间体的检测是高级氧化技术研究的重要内容。本研究利用高效液相-质谱联用仪分析鉴定降解产物,提出了可能的降解途径,结果如图12所示。N-RGF活化PDS降解BPA的可能中间体有10个,因1O2具有低氧化能力(0.98 eV),矿化能力相对较弱[39],降解主要产生羟基化和醌类等中间体,其可能的降解途径如下:1)BPA中的2个富电子苯基在被1O2攻击后,β-裂解异丙基产生苯酚(P1,m/z=94)和4-异丙烯基苯酚(P2,m/z=134),P2进一步通过羟基化生成4-羟基苯乙酮(P3,m/z=136)或被1O2氧化降解为对苯醌(P4,m/z=108),然后苯醌在1O2作用下氧化开环,分解为有机酸、CO2和H2O。2)BPA在异丙基位断裂后,进一步羟基化生成4-(2-羟基丙-2-基)苯酚(P5,m/z=152)。3)BPA在异丙烯桥位裂解生成4-异丙基苯酚 (P6,m/z=136)和2-苯基丙-2-醇(P7,m/z=136),且由于羟基化产物不稳定,经异丙基乙烯桥[40]裂解后,易分解为单环芳烃。
图12 N-RGF活化PDS降解BPA的可能途径

Fig.12 Possible degradation pathway of BPA by N-RGF activated PDS

Full size|PPT slide

2.4 降解过程雌激素活性评价

进一步研究N-RGF活化PDS降解BPA过程中产生的雌激素活性,评价可能的环境风险。利用MTT比色法检测乳腺癌细胞MCF-7的活力[41],结果如图13所示。与对照组的细胞存活率(100%)相比,10 mg/L BPA溶液处理的MCF-7细胞经24 h增殖后,细胞存活率为112.14%,说明BPA雌激素可以促进MCF-7细胞增殖。然而,利用120 min时的降解液处理MCF-7细胞,经过24 h增殖后,细胞存活率降为86.35%,说明降解液不能促进MCF-7细胞增殖,降解液的雌激素活性基本消除。同理,当用10 mg/L BPA溶液处理MCF-7细胞,经过48 h增殖后,BPA溶液的细胞存活率为108.65%,而利用降解液处理的MCF-7细胞存活率仅为67.25%。由此可知,利用N-RGF活化PDS降解BPA能够有效减少或消除BPA的雌激素活性,且产生的10个可能的中间体没有雌激素活性或活性均小于母体BPA的雌激素活性。雌激素活性消除主要是产生的1O2破坏了BPA苯环上的对羟基,而对羟基在雌激素活性中起着重要作用[42]
图13 N-RGF活化PDS降解BPA过程中的产物对MCF-7细胞活力的影响

Fig.13 The viabilities of MCF-7 cells treated by initial BPA and degradation intermediates produced from N-RGF activated PDS

Full size|PPT slide

2.5 溶解性有机质及无机阴离子的影响

为探究天然水体中普遍存在的天然有机质和无机阴离子对N-RGF活化PDS降解BPA的影响,将N-RGF分别用于降解含有4 mg/L胡敏素(HA)、富里酸(FA)、Cl- HCO3-的BPA溶液,结果如图14所示。当体系中有HA和FA时,BPA总去除率均从82.64%增加至99.9%,可能是HA和FA中含有大量的酚羟基和羧基[43],可加速N-RGF表面的电子转移,促进N-RGF活化PDS降解BPA。然而,当体系中有4 mg/L Cl- HCO3-时,BPA的总去除率分别为49%和83.4%,说明 HCO3-不影响N-RGF活化PDS降解BPA,而Cl-对N-RGF活化PDS降解BPA具有明显抑制作用,其主要原因可能是Cl-与PDS的直接反应(化学式(1)、(2))减少了体系中的PDS含量,影响PDS活化产生1O2,进而影响BPA降解[44]
Cl-+S2 O82-+ H+ SO42-+Cl2+ H2O, (化学式1)
Cl- + S2 O82- SO42-+HOCl。 (化学式2)
图14 HA、FA、Cl- HCO3-对 N-RGF活化PDS降解BPA的影响

Fig.14 Effects of HA, FA, Cl-, HCO3- on BPA removal by N-RGF activated PDS

Full size|PPT slide

2.6 材料稳定性研究

为探究N-RGF的可重复使用性和稳定性,将N-RGF重复应用于活化PDS去除初始质量浓度10 mg/L BPA的溶液中,实验条件为0.5 g/L催化剂和0.1 g/L PDS,在N-RGF活化PDS降解BPA 120 min后,用镊子取出N-RGF,甲醇、水交替洗涤N-RGF至中性。由图15可知,N-RGF重复使用5次时对BPA的吸附去除率分别为49.38%、46.84%、47.16%、48.42%和42.66%,降解去除率分别为29.74%、27.54%、30.96%、23.72%和32.59%,总去除率分别为79.12%、74.38%、78.12%、72.41%和75.25%。重复使用5次后N-RGF对BPA的总去除率保持在72%,表现出足够的稳定性,且具有易回收能力。这种易回收性将减少RGO使用时释放带来的环境风险,降低使用成本。
图15 N-RGF活化PDS降解BPA的重复使用实验

Fig.15 Cyclic experiment of BPA removal by N-RGF activated PDS

Full size|PPT slide

3 结论

以吡咯为氮源和溶胀剂,通过水热-冷冻干燥法制备出了易回收的氮掺杂还原氧化石墨烯泡沫(N-RGF),其最佳制备条件是氮掺杂量7.5%、水热温度180 ℃、反应时间20 h。制备的N-RGF呈网状三维多孔结构,孔道分布相对均匀(2~3 μm),且具有孔体积大和石墨相氮含量高的优势。RGF和N-RGF活化PDS降解BPA的总去除率分别为56.76%和82.64%,N-RGF活化PDS降解BPA的动力学常数是RGF的5.88倍,且N-RGF表现出更好的稳定性。N-RGF活化PDS降解BPA的主要活性物种是单线态氧,属非自由基活化,可消除水中溶解性有机质HA和FA的抑制问题。N-RGF活化PDS降解BPA的可能中间体有10个,且无明显的雌激素活性。

参考文献

[1]
HATEF A, ALAVI S M H, ABDULFATAH A, et al. Adverse effects of bisphenol A on reproductive physiology in male goldfish at environmentally relevant concentrations[J]. Ecotoxicology and Environmental Safety, 2012, 76(1):56-62.
[2]
GUO W, LI J, LUO M, et.al. Estrogenic activity and ecological risk of steroids,bisphenol A and phthalates after secondary and tertiary sewage treatment processes[J]. Water Research, 2022, 214:118189.
[3]
黄智辉, 纪志永, 陈希, 等. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(5):2475-2484.
HUANG Z H, JI Z Y, CHEN X, et al. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress, 2019, 38(5):2475-2484.
[4]
XU X, ZONG S, CHEN W, et al. Comparative study of bisphenol A degradation via heterogeneously catalyzed H2O2 and persulfate:reactivity,products,stability and mechanism[J]. Chemical Engineering Journal, 2019, 369:470-479.
[5]
DUAN X, SUN H, SHAO Z, et al. Nonradical reactions in environmental remediation processes:uncertainty and challenges[J]. Applied Catalysis B:Environmental, 2018, 224:973-982.
[6]
WANG B, LI Q, LV Y, et al. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation[J]. Chemical Engineering Journal, 2021, 416:129162-129174.
[7]
WANG W, CHEN M, WANG D, et al. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation:catalytic mechanism and toxicity assessment of degradation intermediates[J]. Science of the Total Environment, 2021, 772:145522-145539.
[8]
YANG Y, LU X, JIANG J, et al. Degradation of sulfamethoxazole by UV,UV/H2O2 and UV/persulfate(PDS):formation of oxidation products and effect of bicarbonate[J]. Water Research, 2017, 118:196-207.
[9]
DU X, ZHANG Y, SI F, et al. Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds:reduced graphene oxide-assisted and CuO (001) facet-dependent[J]. Chemical Engineering Journal, 2019, 356:178-189.
[10]
CHU C H, YANG J, HUANG D H, et al. Cooperative pollutant adsorption and persulfate-driven oxidation on hierarchically ordered porous carbon[J]. Environmental Science & Technology, 2019, 53(17):10352-10360.
[11]
ZHANG T, CHEN Y, WANG Y R, et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation[J]. Environmental Science & Technology, 2014, 48(10):5868-5875.
[12]
LI F, JIANG X, ZHAO J, et al. Graphene oxide:a promising nanomaterial for energy and environmental applications[J]. Nano Energy, 2015, 16:488-515.
[13]
赵芮光. 氮掺杂还原氧化石墨烯材料的制备及其吸附性能的研究[D]. 济南: 山东大学, 2021.
ZHAO R G. Preparation and adsorption properties of nitrogen-doped reduced graphene oxide materials[D]. Jinan: Shandong University, 2021.
[14]
ZHAO Y, ZHOU Y, O'HAYRE R, et al. Electrocatalytic oxidation of methanol on Pt catalyst supported on nitrogen-doped graphene induced by hydrazine reduction[J] Journal of Physics and Chemistry of Solids, 2013, 74:1608-1604.
[15]
LONG D H, LI W, LING L C, et al. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide[J]. Langmuir, 2010, 26(20):16096-16102.
Nitrogen-doped graphene sheets were prepared through a hydrothermal reduction of colloidal dispersions of graphite oxide in the presence of hydrazine and ammonia at pH of 10. The effect of hydrothermal temperature on the structure, morphology, and surface chemistry of as-prepared graphene sheets were investigated though XRD, N(2) adsorption, solid-state (13)C NMR, SEM, TEM, and XPS characterizations. Oxygen reduction and nitrogen doping were achieved simultaneously under the hydrothermal reaction. Up to 5% nitrogen-doped graphene sheets with slightly wrinkled and folded feature were obtained at the relative low hydrothermal temperature. With the increase of hydrothermal temperature, the nitrogen content decreased slightly and more pyridinic N incorporated into the graphene network. Meanwhile, a jellyfish-like graphene structure was formed by self-organization of graphene sheets at the hydrothermal temperature of 160 °C. Further increase of the temperature to 200 °C, graphene sheets could self-aggregate into agglomerate particles but still contained doping level of 4 wt % N. The unique hydrothermal environment should play an important role in the nitrogen doping and the jellyfish-like graphene formation. This simple hydrothermal method could provide the synthesis of nitrogen-doped graphene sheets in large scale for various practical applications.
[16]
PANCHAKARLA L S, SUBRAHMANYAM K S, SAHA S K, et al.Synthesis,structure, and properties of boron- and nitrogen-doped graphene[J]. Advanced Materials, 2009, 21(46): 4726-4730.
[17]
LIN Z, WALLER G H, LIU Y, et al. 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction[J]. Nano Energy, 2013, 2(2):241-248.
[18]
和丽金, 龙俊宏, 金华蕾, 等. 氮掺杂还原氧化石墨烯泡沫吸附/活化过硫酸盐协同去除双酚A的研究[J]. 中国环境科学, 2023, 43(3):1107-1121.
HE L J, LONG J H, JIN H L, et al. Removal of bisphenol A by nitrogen-doped reduced graphene oxide foam via adsorption/peroxydisulfate activation[J]. China Environmental Science, 2023, 43(3):1107-1121.
[19]
WANG X B, QIN Y L, ZHU L H, et al. Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols:synergistic effect between adsorption and catalysis[J]. Environmental Science & Technology, 2015, 49(11):6855-6864.
[20]
WANG Q, LI L, LUO L, et al. Activation of persulfate with dual-doped reduced graphene oxide for degradation of alkylphenols[J]. Chemical Engineering Journal, 2019, 376:120891-120901.
[21]
MENG L Y, PARK S J. Effect of ZnCl2 activation on CO2 adsorption of N-doped nanoporous carbons from polypyrrole[J]. Journal of Solid State Chemistry, 2014, 218:90-94.
[22]
WANG Z, SUN L, LOU X, et al. Chemical instability of graphene oxide following exposure to highly reactive radicals in advanced oxidation processes[J]. Journal of Colloid and Interface Science, 2017, 507:51-58.
The rapidly increasing and widespread use of graphene oxide (GO) as catalyst supports, requires further understanding of its chemical stability in advanced oxidation processes (AOPs). In this study, UV/HO and UV/persulfate (UV/PS) processes were selected to test the chemical instability of GO in terms of their performance in producing highly reactive hydroxyl radicals (OH) and sulfate radicals (SO), respectively. The degradation intermediates were characterized using UV-visible absorption spectra (UV-vis), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Experimental data indicate that UV/PS process was more effective in enhancing GO degradation than the UV/HO system. The overall oxygen-containing functionalities (e.g. CO, CO and OCO groups) dramatically declined. After radical attack, sheet-like GO was destructed into lots of flakes and some low-molecular-weight molecules were detected. The results suggest GO is most vulnerable against SO radical attack, which deserves special attention while GO acts as a catalyst support or even as a catalyst itself. Therefore, stability of GO and its derivatives should be carefully assessed before they are applied to SO-based AOPs.Copyright © 2017 Elsevier Inc. All rights reserved.
[23]
HUMMERS W S J, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
[24]
罗利军, 孟德梅, 戴建辉, 等. TiO2-NB/pg-C3N4可见光催化降解17α-乙炔雌二醇的机理[J]. 中国环境科学, 2022, 42(2):654-664.
LUO L J, MENG D M, DAI J H, et al. The degradation mechanism study of 17a-ethinylestradiol by TiO2 nanobelt/pg-C3N4 photocatalyst under visible light irradiation[J]. China Environmental Science, 2022, 42(2):654-664.
[25]
WEI X, HUANG T, YANG J H, et al. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents[J]. Journal of Hazardous Materials, 2017, 335:28-38.
In this work, we developed a green synthesis method to prepare the hybrid aerogels containing graphene oxide (GO) and microcrystalline cellulose (MCC) using lithium bromide (LiBr) aqueous solution as the solvent, which insured the complete dissolution of MCC. The interaction between GO and MCC was investigated through different methods The results demonstrate that there is a strong interaction between GO and MCC molecules, which promotes the exfoliation of GO in the hybrid aerogels. The hybrid GO/MCC aerogels exhibit typical three dimensional porous structure and the pore morphology can be well adjusted by changing the content of GO. The adsorption ability of the hybrid aerogels was measured using methylene blue (MB) as an adsorbate. The results show that the adsorption ability of GO per unit mass is greatly enhanced compared with the pure GO aerogel, especially at relatively low GO content the adsorption amount of GO per unit mass is enhanced up to 2630mg/g. Further results demonstrate that the hybrid GO/MCC aerogels still obey the pseudo-second-order adsorption model, which is similar to that of the pure GO aerogel. The mechanism for the amplified adsorption ability of GO in the hybrid GO/MCC aerogels is then analyzed.Copyright © 2017 Elsevier B.V. All rights reserved.
[26]
LIANG Q, LUO H, GENG J, et al. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2018, 338:62-71.
[27]
ZHANG X P, LIU D, YANG L, et al. Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis[J]. Journal of Materials Chemistry A, 2015, 3(18):10031-10037.
[28]
ZHANG L, SHI Y, WANG L, et al. AgBr-wrapped Ag chelated on nitrogen-doped reduced graphene oxide for water purification under visible light[J]. Applied Catalysis B:Environmental, 2018, 220:118-125.
[29]
LI S, LU X, LI X, et al. Preparation of bamboo-like PPy nanotubes and their application for removal of Cr(Ⅵ) ions in aqueous solution[J]. Journal of Colloid and Interface Science, 2012, 378(1):30-35.
[30]
HU H, ZHAO Z B, WAN W B, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15):2219-2223.
[31]
WEN Q, WANG Y, ZENG Z, et al. Covalent organic frameworks-derived hierarchically porous N-doped carbon for 2,4-dichlorophenol degradation by activated persulfate:the dual role of graphitic N[J]. Journal of Hazardous Materials, 2022, 426:128065-128077.
[32]
BALLAV N, MAITY A, MISHRA S B. High efficient removal of chromium(Ⅵ) using glycine doped polypyrrole adsorbent from aqueous solution[J]. Chemical Engineering Journal, 2012, 198/199:536-546.
[33]
LI H, LIU L F, YANG F L. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup[J]. Journal of Materials Chemistry A, 2013, 1(10):3446-3453.
[34]
WANG F, LU X W, PENG W C, et al. Sorption behavior of bisphenol A and triclosan by graphene:comparison with activated carbon[J]. ACS Omega, 2017, 2(9):5378-5384.
[35]
CAI S, ZHANG Q, WANG Z, et al. Pyrrolic N-rich biochar without exogenous nitrogen doping as a functional material for bisphenol A removal:performance and mechanism[J]. Applied Catalysis B:Environmental, 2021, 291:120093-120102.
[36]
CHENG X, GUO H, ZHANG Y, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research, 2017, 113:80-88.
The reaction between persulfate (PS) and carbon nanotubes (CNTs) for the degradation of 2,4-dichlorophenol (2,4-DCP) was investigated. It was demonstrated that CNTs could efficiently activate PS for the degradation of 2,4-DCP. Results suggested that the neither hydroxyl radical (OH) nor sulfate radical (SO) was produced therein. For the first time, the generation of singlet oxygen (O) was proved by several methods including electron paramagnetic resonance spectrometry (EPR) and liquid chromatography mass spectrometry measurements. Moreover, the generation of the superoxide radical as a precursor of the singlet oxygen was also confirmed by using certain scavengers and EPR measurement, in which the presence of molecular oxygen was not required as a precursor of O. The efficient generation of O using the PS/CNTs system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral conditions with the mineralization and toxicity evaluated. A kinetic model was developed to theoretically evaluate the adsorption and oxidation of 2,4-DCP on the CNTs. Accordingly, a catalytic mechanism was proposed involving the formation of a dioxirane intermediate between PS and CNTs, and the subsequent decomposition of this intermediate into O.Copyright © 2017 Elsevier Ltd. All rights reserved.
[37]
GUO C Y, CHEN C F, LU J Y, et al. Stable and recyclable Fe3C@CN catalyst supported on carbon felt for efficient activation of peroxymonosulfate[J]. Journal of Colloid and Interface Science, 2021, 599:219-226.
[38]
CHENG X, GUO H, LI W, et al. Metal-free carbocatalysis for persulfate activation toward nonradical oxidation:enhanced singlet oxygen generation based on active sites and electronic property[J]. Chemical Engineering Journal, 2020, 396:125104-125120.
[39]
MULAZZANI Q G, CIANO M, D'ANGELANTONIO M, et al. Singlet molecular oxygen:not a major product of the reaction between tris(2,2'-bipyridine)ruthenium(3+) and superoxide radical anions[J]. Journal of the American Chemical Society, 1988, 110(8):2451-2457.
[40]
CUI Y H, LI X Y, CHEN G. Electrochemical degradation of bisphenol A on different anodes[J]. Water Research, 2009, 43(7):1968-1976.
[41]
胥志祥. 基于体外模型研究典型环境激素的生物学作用及机制[D]. 昆明: 昆明理工大学, 2018.
XU Z X. Study on the biological function and mechanism of typical environmental hormones based on in vitro model[D]. Kunming: Kunming University of Science and Technology, 2018.
[42]
CHEN M Y, IKE M, FUJITA M. Acute toxicity,mutagenicity,and estrogenicity of bisphenol-A and other bisphenols[J]. Environmental Toxicology, 2002, 17(1):80-86.
[43]
WU W, SHAN G, XIANG Q, et al. Effects of humic acids with different polarities on the photocatalytic activity of nano-TiO2 at environment relevant concentration[J]. Water Research, 2017, 122:78-85.
[44]
娄晓祎. 无机阴离子活化过硫酸盐氧化降解典型有机污染物的研究[D]. 上海: 东华大学, 2016.
LOU X Y. Study on oxidative degradation of typical organic pollutants by persulfate activated by inorganic anions[D]. Shanghai: Donghua University, 2016.

基金

国家自然科学基金(22266036)
国家自然科学基金(22266036)
云南省中青年学术技术带头人后备人才项目(202105AC160055)
云南省教育厅科学研究基金(2022Y463)
PDF(5642 KB)

1843

Accesses

0

Citation

Detail

段落导航
相关文章

/