K-SVD算法的超声图像加性噪声去噪研究

秦晓伟,郭建中

PDF(1509 KB)
欢迎访问陕西师范大学学报(自然科学版)官方网站!
陕西师范大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (6) : 42-46.
物理学

K-SVD算法的超声图像加性噪声去噪研究

  • 秦晓伟,郭建中*
作者信息 +

The research on denoising of ultrasound image additive noise based on K-SVD Algorithm

  • QIN Xiao-wei, GUO Jian-zhong*
Author information +
History +

摘要

利用具有稀疏性、特征保持性和可分离性等特点的超完备字典的稀疏表示,基于核奇异值分解(K-SVD)算法,研究了对图像去除噪声效果以及影响效果的因素.理论分析及实验研究表明:K-SVD算法能够很好去除超声图像噪声,保留图像细节特征,获得更高的峰值信噪比(PSNR)值.在计算过程中发现K-SVD算法中的训练样本尺度大小是影响去噪效果的主要参数.

Abstract

Using the sparse representation of over-completed dictionary which was sparsity,integrity and separability we studied the quality of image denoising and the factors which affected denoising quality in the framework of K-SVD algorithm. Theoretical analysis and experimental study show that the K-SVD algorithm can refrain noise very well, retain more details of the image and obtain better PSNR. The key factor which affects the quality of denoising in K-SVD algorithm is the size of trained pictures.

关键词

核奇异值分解算法 / 图像去噪 / 稀疏表示

Key words

K-SVD Algorithm / image denoising / sparse representation

引用本文

导出引用
秦晓伟,郭建中. K-SVD算法的超声图像加性噪声去噪研究. 陕西师范大学学报(自然科学版). 2012, 40(6): 42-46
QIN Xiao-wei, GUO Jian-zhong. The research on denoising of ultrasound image additive noise based on K-SVD Algorithm. Journal of Shaanxi Normal University(Natural Science Edition). 2012, 40(6): 42-46

参考文献

基金

国家自然科学基金资助项目(10974128).
PDF(1509 KB)

Accesses

Citation

Detail

段落导航
相关文章

/