摘要
提出了极小线性码和极小线性码链的定义,对极小线性码[n,k;q]的一类特殊子码,通过删除其某一分量上的码元,构造出一类新的极小线性码.证明了:若C是一个[n,k;q]极小线性码,且当C⊥的极小距离>2时,由上述方法可构造出一个极小线性码链.基于这个极小线性码链,给出一种动态的可验证的秘密共享体制, 与以往的(t,n)门限秘密共享方案相比,该方案不仅有更丰富的接入结构,且有较高的安全性和实用性.
Abstract
Give out minimal linear code is defined, for a class of special subcode of minimal linear codes [n,k;q], a new class of minimal linear codes is constructed by deleting one coordinator of all code words. Furthermore, we define minimal linear code chain and prove that if C is an [n,k;q] minimal linear code and the minimal distance of C⊥ is larger than 2, then a minimal linear code chain can be constructed by this method. Based on the minimal linear code chain, a novel dynamic and verifiable secret sharing scheme is proposed. Compared with the former (t,n) threshold secret-sharing scheme, the proposed scheme not only has more interesting access structure, but also is of higher security and practicality.
关键词
极小线性码 /
极小线性码链 /
动态的秘密共享方案 /
离散对数密码体制 /
可验证性
{{custom_keyword}} /
Key words
minimal linear code /
minimal linear code chain /
dynamic secret sharing scheme /
discrete-logarithm cryptosystem /
verification
{{custom_keyword}} /
郭玉娟,李志慧,赖红.
基于线性码上的动态可验证的秘密共享方案. 陕西师范大学学报(自然科学版). 2010, 38(4): 7-12
GUO Yu-juan, LI Zhi-hui, LAIHong.
A novel dynamic and verifiable secret sharing scheme based on linear codes. Journal of Shaanxi Normal University(Natural Science Edition). 2010, 38(4): 7-12
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(10571112); 陕西省自然科学基金资助项目(2007A06)
{{custom_fund}}