
中国文旅上市企业关联交易网络的空间结构及节点角色演化
王钊, 王欢
中国文旅上市企业关联交易网络的空间结构及节点角色演化
Spatial structure and node role evolution of the related transaction network of Chinese listed cultural and tourism enterprises
企业网络为认知文旅产业经济空间联系演化的深层次机理和多样化趋势提供了创新性视角。关联交易网络作为企业间业务往来的重要表征形式,兼具横向企业间联系与纵向子母公司间联系的双重特征属性。采用2000—2021年文化类和旅游类上市企业的关联交易数据,揭示文旅企业关联交易网络的空间结构及其演化特征,并对网络节点的地位和角色进行识别。研究发现:2000—2021年文旅上市企业关联交易额总体呈波动增长态势,参与文化旅游业的行业不断丰富,租赁和商务服务业为首要关联方;随着关联交易量提升,网络的空间覆盖范围扩大,跨地区的长距离联系不断增加,整体网络由简单的“放射状”向复杂的“网络”结构演化,少数中心度高的节点在网络中起“枢纽”作用;节点转变中心性和转变控制力水平不断提升并服从高-高、低-低一维分布规律,北京和上海一直是网络的领导核心城市,杭州、沈阳和长沙在不同时期承担中心集约或权力门户角色,大量中西部节点在网络中为裙带边缘角色。
Enterprise networks provide an innovative perspective on the deep-seated mechanisms and diversified trends of the evolution of economic spatial linkages in the cultural and tourism industry. As an important form of characterization of business transactions among enterprises, the related transaction network has the dual attributes, horizontal links among enterprises and vertical links among subsidiaries and parent companies. According to the data of related transactions of listed cultural and tourism enterprises from 2000 to 2021, the spatial structure of related transaction networks of cultural and tourism enterprises as well as their evolution characteristics are revealed, and the status and roles of network nodes are identified. The study finds that the overall related transaction value of listed cultural and tourism enterprises from 2000 to 2021 experienced staggering growth, and the industries involved in the cultural and tourism industry had been enriched, the leasing and business services industry being mainly related parties. With the increase of related transaction volumes, expansion of network's spatial coverage, and growth of long-distance connections across regions, the overall network evolves from a simple “radial” structure to a complex “network” one, with a few nodes of high centrality playing the role of “hubs”. The level of node shift centrality and shift control increases, and obeys the one-dimensional distribution of high-high and low-low. Beijing and Shanghai have always been the leading and core cities of the network, while Hangzhou, Shenyang, and Changsha have played the role of center or power portal at different times, and a large number of nodes in Midwest China have taken on the role of crony edges in the network.
文旅上市企业 / 关联交易网络 / 空间结构 / 演化特征 / 节点角色 {{custom_keyword}} /
listed cultural and tourism enterprises / related transaction network / spatial structure / evolution characteristics / node roles {{custom_keyword}} /
表1 文旅上市企业名录Tab.1 List of listed companies in the culture and tourism category |
分类 | 企业名录 |
---|---|
文化类 50家 | 华数传媒、华媒控股、湖北广电、视觉中国、中原传媒、华闻集团、北京文化、欢瑞世纪、电广传媒、粤传媒、奥飞娱乐、慈文传媒、省广集团、鼎龙文化、万达电影、金逸影视、华谊兄弟、天舟文化、捷成股份、光线传媒、百纳千成、新文化、中文在线、芒果超媒、唐德影视、幸福蓝海、华凯易佰、世纪天鸿、中信出版、锋尚文化、中视传媒、城市传媒、中文传媒、祥源文化、浙数文化、文投控股、长江传媒、博瑞传播、中国电影、中南传媒、上海电影、皖新传媒、新华文轩、南方传媒、凤凰传媒、中国出版、新经典、横店影视、出版传媒、读者传媒 |
旅游类 35家 | 万科A、华侨城A、通程控股、华天酒店、张家界、岭南控股、新华联、三木集团、苏宁环球、ST凯撒、腾邦国际、三湘印象、峨眉山A、招商蛇口、丽江股份、云南旅游、三特索道、浙江永强、众信旅游、宋城演艺、金马游乐、中青旅、首旅酒店、国旅联合、大连圣亚、绿地控股、国脉文化、豫园股份、曲江文旅、西藏旅游、百大集团、金陵饭店、中国中免、长白山、九华旅游 |
表2 关联交易网络的密度、关联度、平均聚类系数和累计度分布拟合函数Tab.2 Density, relatedness and average clustering coefficient of the connected transaction network |
年份 | 密度 | 关联度 | 平均聚类系数 | 幂函数 | R2 |
---|---|---|---|---|---|
2000—2005年 | 0.060 | 0.405 | 0.085 | P(k)=1.007k-1.126 | 0.993 |
2006—2010年 | 0.051 | 0.139 | 0.215 | P(k)=1.003k-1.513 | 0.998 |
2011—2015年 | 0.022 | 0.427 | 0.194 | P(k)=0.991k-1.178 | 0.996 |
2016—2021年 | 0.024 | 0.665 | 0.456 | P(k)=0.521k-1.651 | 0.996 |
表3 城市节点的角色分类Tab.3 Role classification of nodes in the network |
时期 | 领导核心城市 | 中心集约城市 | 权力门户城市 | 裙带边缘城市 |
---|---|---|---|---|
2000—2005年 | 北京、上海 | 杭州 | 长沙、沈阳 | 武汉、海口、常州等14个 |
2006—2010年 | 北京、上海 | 无 | 沈阳 | 杭州、海口、长沙等15个 |
2011—2015年 | 北京、上海、杭州 | 无 | 无 | 沈阳、金华、海口等64个 |
2016—2021年 | 北京、上海 | 无 | 杭州 | 深圳、海口、金华等109个 |
[1] |
王娟, 杨晨. 中国旅游集团业务布局特征与形成机制研究[J]. 旅游学刊, 2019, 34(8):53-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
柳百萍, 刘庆广, 韦传慧. 旅游上市公司时空态势行业差异研究[J]. 地理科学, 2015, 35(2):176-182.
采集旅游上市公司样本资料,研究旅游上市公司空间分布、发展变化的行业差异,样本公司分属住宿餐饮业、商务服务业、公共设施管理业。空间分布特征:① 集聚分布,具有“溯源”性。住宿餐饮业、商务服务业分布指向高级别中心城市,北京、深圳2市最集中。公共设施管理业指向高级别旅游吸引物分布地,省区分布非常分散。② 比较中国旅游企事业单位省市排名,旅游上市公司集聚区与旅游企事业单位集中区错位分布。③ 主营业务投资地区分布受行业特征影响,住宿餐饮业、商务服务业投资异地化,分散化;公共设施管理业投资本地化,集聚化。分析样本公司年份区间数量及行业归属变化,得出结论:① 住宿餐饮业、商务服务业行业变化活跃,时间序列间歇式缓慢发展;② 公共设施管理业行业相对稳定,“井喷”后缓慢延续发展。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
周慧玲, 王甫园. 基于修正引力模型的中国省际旅游者流空间网络结构特征[J]. 地理研究, 2020, 39(3):669-681.
高速交通时代旅游者流空间网络结构具有什么特征,是全国旅游流空间组织和管理需要探索的基础问题。贴近客观实际修正引力模型的相关参数,测算中国省际旅游者流,结合复杂网络分析方法,探索空间网络结构的优势、联系和发育水平。分析发现该网络结构稳定,旅游者流大量汇聚于中国的东南半壁、流动不对称、邻近型和跳跃型空间联系结构并存、层级性明显。具体表现为:首先,从优势水平来看,旅游流大量汇聚于上海(东)-广东(南)-四川(西)-河北(北)区域范围内。其次,从联系水平来看,东部三省江苏、浙江、山东是各地优势流量的主要汇聚之所,西藏的排名靠末。最后,从发育水平来看,旅游流动不对称,网络有“紧密团块型”和“飞地跨越型”两种空间联系结构且表现出层级性,不平衡发育状态将在较长时间内保持不变。
The characteristics of the spatial network structure of tourist flow in a high-speed transportation era are the fundamental issue that needs to be explored in the spatial organization and management of the national tourist flow. Through modification of relative parameters of the gravity model close to reality to calculate the inter-provincial tourist flow, and with application of the complex network analysis method to measure the superiority, connectivity and development level of the inter-provincial tourist flow spatial network structure in China, the research reveals the following characteristics of the spatial network structure: the structure of the inter-provincial tourist flow spatial network in China is stable, with tourist flows converging in Southeast China, asymmetric flow, coexistent spatial connectivity structures of proximity type and skipping type, and significant hierarchical structure. In practical terms: (1) Seen from the superiority of the inter-provincial tourist flow spatial network in China, main tourist destinations and main target tourism markets are overlapping, the tourism flow largely converges within the region along Shanghai (East)-Guangdong (South)-Sichuan (West)-Hebei (North); (2) Seen from the connectivity level of the inter-provincial tourist flow spatial network in China, three eastern provinces of Jiangsu, Zhejiang and Shandong are main converging places with the superior tourism flow from various regions, among which Jiangsu and Zhejiang even have created a mutually beneficial relationship; while Tibet is at the bottom of the list, especially the flow from Hainan; (3) Seen from the development level of the inter-provincial tourist flow spatial network in China, the entropy is fairly high, and the structure is stable; the tourism flow presents asymmetry at a certain level, and the spatial converge of superior tourism flow is obvious; and there is basically no group-organizing phenomenon within the spatial network; the inter-provincial tourist flow spatial network China has two types of structure, namely “close mass connection structure” and the “enclave spanning connection structure”. The former is represented by Jiangsu, Zhejiang and Shanghai, and the latter by Jiangsu and Guangdong; the inter-provincial tourist flow spatial network in China is of hierarchical nature, roughly presenting a pattern of eastern-central-western gradient weaving; and the status of unbalanced development will remain unchanged for a relatively long time. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
柯景怡, 周子涵, 张高军. 传统节点与新型节点:深圳旅游流网络结构[J]. 陕西师范大学学报(自然科学版), 2023, 51(2):47-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
韩剑磊, 明庆忠, 史鹏飞, 等. 基于百度指数的中国省域旅游信息流网络结构特征及其影响因素[J]. 陕西师范大学学报(自然科学版), 2021, 49(6):43-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
张广海, 袁洪英. 中国城市旅游信息流空间网络格局及其复杂性[J]. 经济地理, 2023, 43(1):197-205.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
李涛, 刘家明, 朱鹤, 等. 中国旅游产业投资及旅游发展空间结构响应:基于2000—2015年旅游业三大核心部门数据的分析[J]. 地理科学, 2019, 39(2):204-213.
以旅游业三大核心部门(旅游饭店、旅游景区和旅行社)的固定资产和人力资源投资为研究变量,分析了2000~2015年中国旅游产业投资演化及旅游发展空间结构的响应。研究发现,中国旅游产业投资存在与旅游发展总体协调、省域空间分布不均、年际变化多样和部门差异明显的特征;省域旅游发展响应系数的变化,反映了中国旅游产业投资的“时间磨蚀效应”和“绩效累积效应”;在“空间牵引效应”作用下,中国旅游产业投资促进了中国旅游发展空间结构特征由离散型“核式极化”向连续型“域状扩散”转变。最后,提炼了旅游发展对旅游投资空间响应的实质:以投资为驱动,依据循环积累因果机制,促进区域旅游产业可持续增长。
The pattern of Chinese tourism industry is the result of comprehensive development of regional tourism, while tourism investment is a driving factor for regional tourism development. In order to investigate extent and mechanism of tourism investment and its impact on tourism development, the paper analyzed evolution of tourism investment during 2000-2015 in China, based on the fixed assets and human resources investment data in hotels, tourist attractions and travel agencies. Hotels, tourist attractions and travel agencies are known as the three core departments in tourism industry. Conclusions can be concluded as followings. 1) The evolution of tourism investment present characteristic of coordination with tourism development. Thus, the fixed assets investment showed increase tendency in slow speed and the human resource investment firstly increased and then decreased. At the same time, tourism investment in hotels was the largest, which was followed by tourist attractions, and tourism investment in travel agencies was the least. From the perspective of spatial difference, the Eastern China held advantage over the Central and Western China. Meanwhile, the spatial difference of tourism departments among provinces was obvious. Hotels present apparent mostly and travel agencies held small difference. 2) According to the impact index of tourism investment, it was higher for hotels than tourist attractions and travel agencies. The difference of impact index among provinces presented that there were two investment effects, namely the ‘time abrasion effect’ and ‘the performance cumulative effect’, about tourism investment in the three core departments of tourism industry. The time abrasion effect played an important role in the hotels’, tourist attractions’ fixed assets investment and the human resources investment in the whole tourism industry. While the performance cumulative effect only exerts an influence on the fixed assets investment in travel agencies. 3) Based on ‘the spatial traction effect’, the tourism investment led the pattern of tourism development transferring from discrete nuclear polarization to continuous regional diffusion. The paper, at last, analyzed mechanism of the tourism investment’s spatial influence on tourism development and found that the investment was the drive of regional tourism development, and the circulatory accumulation mechanism promoted the sustainable increase of tourism industry. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
高雅妮, 何丹, 高鹏, 等. 基于三层级股权关系的长三角城市网络节点地位研究[J]. 地理研究, 2022, 41(6):1577-1592.
如何更为精准地刻画流空间视角下城市网络节点地位,是城市网络研究的关注重点之一。本文以长三角地区县级空间单元为研究区域,采用全行业500强上市公司的“母-子-孙”三层级股权关系数据,构建有向加权网络来刻画长三角地区城市间投资联系水平;通过转变中心性与转变控制力对节点城市的网络地位进行分类;最后采用空间计量模型对长三角城市网络节点地位的影响因素进行测算和分析。研究发现:① 长三角城市网络节点地位呈现出“等级+网络”的特征。城市在网络中依旧呈等级分布;然而部分中小城市在网络中地位具有了上升通道,往往可利用资源禀赋使得其获得更高的网络地位,网络结构具有扁平化特征。② 长三角城市网络节点地位特征并没有完全遵循转变中心性与转变控制力的“高-高”“中-中”和“低-低”的匹配关系,而存在“高-中(低)”“中-高(低)”或“低-高(中)”的非匹配关系。③ 城市经济发展水平、人力资本、创新活力、产业结构、城市经营环境和公共服务设施配套情况等会对城市网络地位产生显著的影响。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
Literature on how cities get connected through networks of firms has been increasing in recent years. In particular, advanced producer service (APS) firms are being widely used to build intra-firm linkages to establish urban networks. In contrast to studies applying intra-firm networks, this study proposes an alternative strategy to build urban networks based on inter-firm service provision relationships during the process of initial public offering (IPO) in which APS firms – including securities, law firms and accounting firms – provide professional services for firms aiming to be publicly listed. Based on service provision connections between APS firms and their clients, this study provides fresh insights on urban networks in China. The results show that Beijing, Shenzhen and Shanghai strategically hold dominant positions within Chinese urban networks and they are the lead command and financial centres within the country. Particularly, Beijing has overwhelmingly more influence over other cities. The urban networks are embedded in China’s unique institutional context where market and state power together have shaped these networks. Since the urban network is built up based on real economic linkages, the findings might have further implications for policy-making and could contribute to ongoing debates regarding financial centres in China. It implies that connections between firms based on real economic activities can be an effective way to construct urban networks in future research.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
赵新正, 李秋平, 芮旸, 等. 基于财富500强中国企业网络的城市网络空间联系特征[J]. 地理学报, 2019, 74(4):694-709.
基于2015年世界财富500强中的102家中国企业数据,根据企业组织特征构建了反映企业—城市间关联的折衷网络模型,借助网络分析等多种方法分析了中国地级城市间和典型城市群之间的网络联系。研究发现:① 城市网络总体连通性较差、向心集中性强,发育不够完备;城市网络连接具有明显的行政中心指向、沿海指向和资源指向;网络节点城市对外经济依赖度高,网络结构扁平特征明显。城市群网络存在权力分散、地位分化和外部联系依赖特征。② 城市网络中省域、城市群和俱乐部边界效应明显,区域内外的中心城市规模和数量对省域行政区经济、城市群经济和俱乐部经济的发展产生影响。③ 城市在多尺度网络中的功能分化明显,大城市和区域型中心城市比中小城市拥有更加完备和均衡的功能体系。沿海三大城市群的辐射带动作用明显,其他城市群的优势功能有待突出。④ 城市(群)跨尺度区域功能互动效应显著,城市(群)的自我经济集聚能力与城市(群)的对外辐射带动功能之间存在密切的正向关系。研究为城市网络模型拓展及理解中国城市网络空间联系特征提供了支撑。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
马海涛, 方创琳. 基于企业微观视角的城市区域生产网络空间组织研究:以粤东城镇群服装生产为例[J]. 地理科学, 2011, 31(10):1172-1180.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
武前波, 宁越敏. 中国城市空间网络分析:基于电子信息企业生产网络视角[J]. 地理研究, 2012, 31(2):207-219.
Through analysis of theory and method on urban network,the paper reveals the characteristics of Chinese urban network based on spatial organization of electronic information enterprises.Results show that electronic information industries of top 500 enterprises of Chinese manufacturing industries and TNCs are concentrated in the coastal economic regions,including the Yangtze River Delta,Pearl River Delta,Beijing-Tianjin-Hebei Region,as well as metropolises and capital cities of the central and western China.Meanwhile,the locations of their R & D institutions are similar to those of enterprise headquarters,but distribution of their production bases is relatively dispersed.In terms of production network of local enterprises and transnational corporations,Chinese urban networks are characterized by localization and globalization.The node cities of enterprise headquarters are more scattered in local urban networks,and have smaller density and connectivity of urban networks.In contrast,global urban networks,taking Beijing and Shanghai as the core nodes,have a higher degree of external links.At the same time,urban networks are more inclusive than urban hierarchy system in China.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
盛科荣, 张红霞, 佀丹丹. 基于企业网络视角的城市网络研究进展与展望[J]. 人文地理, 2018, 33(2):11-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
胡国建, 陆玉麒. 基于企业视角的城市网络研究进展、思考和展望[J]. 地理科学进展, 2020, 39(9):1587-1596.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
叶秀玲, 张莉, 胡国建, 等. 基于企业并购联系视角的中国城市网络演变研究[J]. 地域研究与开发, 2022, 41(3):61-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
焦敬娟, 张齐林, 吴宇勇, 等. 中国异地投资网络结构演化及影响因素研究[J]. 地理科学进展, 2021, 40(8):1257-1268.
随着城市间经济联系日益密切,资本跨区域流动逐渐成为影响区域发展的关键因素,企业异地投资是资本流动的微观体现,探讨企业异地投资特征对于区域发展具有重要意义。为此,论文以1998—2018年中国上市企业异地投资数据为研究对象,构建中国异地投资网络,从全国和东中西3大地区角度分析异地投资网络的空间演化特征及影响因素。研究发现:全国和3大地区异地投资网络节点中心性空间集聚特征明显,主要集中在5大城市群地区;异地投资网络空间上表现出明显的层级结构、空间集聚性、路径依赖等特征;投资净流入和净流出城市仍主要位于东部地区,但投资活动存在向中部和西部发展的趋势;城市的经济发展水平、产业结构、金融环境等均对全国和东中西3大地区呈现差异化的影响。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
梁茹, 王媛, 冯学钢, 等. 文体旅上市企业社会关系网络结构特征分析:同行业与跨行业比较视角[J]. 旅游学刊, 2021, 36(10):14-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
王钊, 孙奕圆. 中国旅游上市企业的经济网络结构演变与分行业扩张模式研究[J]. 地理研究, 2023, 42(8):2135-2151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
袁丰, 于灵慧, 赵岩, 等. 文化差异视角下中国区域间企业投资网络与选择机制:以制造业上市公司为例[J]. 地理研究, 2023, 42(7):1810-1827.
企业跨区域投资决策深度嵌入复杂多元的地方文化-制度情境,解析文化差异的多维影响有助于更好理解企业异地投资行为和区域间交互作用机制。本文在刻画中国制造业上市公司异地扩张和网络演化的基础上,基于文化差异视角,探讨投出地与投入地文化特征以及两者间文化距离三重维度因素对区域间企业投资意愿和投资规模的影响机制。利用两阶段Heckman-Hurdle随机效应模型,在控制投入地和投出地经济社会和制度特征以及区域间地理、制度和经济距离的基础上,本文重点分析了2312家沪深两地主板上市的制造业企业在2007—2016年间异地投资行为背后的文化逻辑。研究表明:中国上市公司异地投资网络演化过程中“邻近扩张”与“跳跃扩张”并存,形成了以京津冀、长三角、粤港澳、成渝四大城市群为顶点的“菱形”网络结构并不断强化。文化差异的三重维度共同影响了中国区域间企业投资网络与选择,较高的投出地冒险倾向和投入地信任水平、较小的区域间文化距离,有利于提升区域间企业异地投资意愿和投资规模。不同经济规模城市组的比较研究表明,文化距离会降低所有规模城市组内部及之间的投资规模,但仅显著降低经济规模相对较小城市组之间的投资意愿。本文有利于拓展区域文化对企业地理、投资区位选择、总部-子公司网络结构影响的认识。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
赵渺希, 王彦开, 胡雨珂, 等. 广佛都市圈网络外部性的城镇借用规模绩效检验[J]. 地理研究, 2022, 41(9):2367-2384.
在城市网络外部性的环境下,借用规模可以使城镇突破地理距离和规模等级限制,通过网络联系实现城镇经济的共同增长。基于理论辨析,以城市网络的借用规模效应为视角,检验网络外部性下城镇借用规模绩效对城镇经济增长的作用。在回顾网络外部性理论的基础上,以广佛都市圈城镇作为研究对象,首先利用偏离均值标准差倍数的方法解析区域绩效、集聚阴影等特征;其次,基于城镇规模、借用规模、交通网络通达性、科技创新外溢性对城镇经济增长的耦合作用,建立多元回归模型检验网络外部性的发生机制。研究发现:① 城镇既有人口规模越小,区域绩效值越低,10万人的人口规模是绩效特征的分界点,大于和小于10万人的城镇分别呈现出借用规模绩效和集聚阴影特征;② 基于新增注册企业数量和企业网络点度的区域绩效均呈现出较为明显的圈层式空间特征,且基于企业网络点度检验的空间分异特征更为突出;都市圈主城区近郊圈层城镇的绩效较明显,而主城区远郊圈层城镇的集聚阴影现象显著;③ 新增注册企业数的绩效与城镇既有规模关系最为紧密,与区域交通枢纽、借用规模、借用绩效、跨镇合作专利等解释变量的弹性系数依次降低;区域交通网络、技术合作网络的提升有利于促进城镇要素集聚,并通过网络外部性效应影响都市圈的城镇化发展。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
魏志华, 赵悦如, 吴育辉. “双刃剑”的哪一面:关联交易如何影响公司价值[J]. 世界经济, 2017, 40(1):142-167.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
刘慧龙, 张玲玲, 谢婧. 税收征管数字化升级与企业关联交易治理[J]. 管理世界, 2022, 38(6):158-176.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
宫晓云, 权小锋, 刘希鹏. 供应链透明度与公司避税[J]. 中国工业经济, 2022(11):155-173.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
季文雅. 关联交易中的关联方关系网络探析[J]. 金融经济, 2006(1):116-118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
范丽繁, 王满四. 双重网络嵌入均衡、双元创新均衡与新创企业成长:来自众创空间在孵企业的实证[J]. 经济管理, 2022, 44(12):103-117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
方健. 关联方大客户交易影响企业技术创新吗:基于沪深A股上市公司的证据[J]. 管理评论, 2023, 35(2):126-134,192.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
盛科荣, 杨雨, 张红霞. 中国城市网络的凝聚子群及影响因素研究[J]. 地理研究, 2019, 38(11):2639-2652.
凝聚子群特征及形成机理的研究是理解城市网络发育规律及其动力机制的重要切入点。利用2016年中国上市公司500强企业总部-分支机构数据,研究了中国城市网络凝聚子群的多维度特征,定量测度了城市间链接关系的影响因素,探索性的分析了凝聚子群的形成机理。结果发现:派系、k-核、lambda集合、核心-边缘方法都表明中国城市网络存在凝聚子群现象,揭示了城市网络链接强度的层级特征;经济规模、政治资源、知识资本是凝聚子群发育的重要影响因素,网络邻近性、地理区位和历史基础也深刻的影响着凝聚子群的空间格局;择优链接和路径依赖是凝聚子群发育的动力机制,城市关键资源和区位优势将进一步转化为城市网络竞争优势。在网络发展环境下,中国政府需要在更大空间尺度上推动城市间合作,并积极应对城市间发展差距趋于扩大的问题。
Cohesive subgroup constitutes a bridge connecting individual cities and urban network. This paper aims to analyze the cohesive subgroups and their mechanisms in the urban network in China. First, data on headquarter and branch locations of China's top 500 public companies in 2016 are subjected to ownership linkage model to approximate the urban network, resulting in a 294×294 valued urban network. Second, four measures of cohesive subgroup analysis, i.e. cliques, k-cores, lambda sets and core-periphery techniques are employed to generalize about the link strengths between cities. Finally, the influencing factors of the cohesive subgroups in the urban network are examined by using quadratic assignment procedure, and the mechanisms are explored under a conceptual framework of urban network growth. Three main findings are concluded. First, the four measures of cliques, k-cores, lambda sets and core-periphery techniques all indicate the presence of cohesive subgroups, revealing the hierarchical structure of link strengths in the urban network in China. The cohesive subgroups are mainly composed of core cities of urban agglomerations, and the cities in the eastern and central regions have more active economic ties compared to the cities in the western region. Second, key resources possessed by cities, such as economic scale, political resources, and knowledge capital, are important factors underlying the formation of cohesive subgroups. Links are more likely to occur between cities with larger economies, richer political resources and more intensive knowledge capital. Temporal distance, geographical location and path dependence also have a profound influence on the spatial pattern of cohesive subgroups. Third, network homophily and path dependence are the dynamic mechanisms underlying the development of cohesive subgroups, and the key resources and location advantages of cities will be further translated into network competitiveness. In the network environment, China's urban governance system and urbanization policies need to be adjusted accordingly. The Chinese government needs to promote network cooperation between cities on a larger spatial scale, and actively respond to the widening economic gap between cities under the network environment. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
Centrality and power have become common foci for world city network research and frequently serve as tools for describing cities’ position or status in the system. However, these concepts are difficult to define and measure. Often they are treated as equivalent: more central cities have more power. This paper challenges this assumed equivalence by proposing conceptually distinct definitions and developing two new measures that allow them to be differentiated empirically. Applying the proposed measures in a hypothetical world city network and the Internet backbone network reveals that centrality and power are distinct and suggests that world cities should be viewed as arising from multidimensional network positions that define multiple types: quintessential world cities that are both central and powerful (such as New York and London), hub world cities that are central but not powerful (such as Washington and Brussels) and gateway world cities that are powerful but not central (such as Miami and Stockholm).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
文超, 詹庆明, 刘达, 等. 基于有向转变中心性与控制力的长三角城市网络空间结构分析[J]. 地理科学, 2021, 41(6):971-979.
采用腾讯人口迁徙数据构建长三角的有向城市网络,利用有向转变中心性与控制力研究人口流动视角下的区域空间结构。研究表明,长三角地区已形成“区域性核心-局域性核心-人口扩散型城市”联动发展的多核心、等级化、网络化的空间结构。在该地区同时存在“同城化”“核心-边缘”空间发展模式。长三角41个城市可划分为7种发展类型,其中资源集聚型城市对人口资源存在普遍争夺的情况。研究进一步分析了长三角地区有向城市网络的空间结构及发展特征,并对相关影响因素进行分析,为长三角地区实现高质量发展的区域战略布局提供支撑。
The rise of urban network research provides a new perspective to analyze the spatial structure of urban agglomeration. The Yangtze River Delta urban agglomeration, one of the most developed and the most active area of human migration in China, has gradually formed a network development pattern, and it is of great significance to study its network spatial structure. This article used the Tencent’s population migration data to construct a directed weighted urban network. The directed alternative centrality (DAC) and power (DAP) were used to measure the characteristics of urban network spatial structure in the Yangtze River Delta. Then the related influencing factors on DAC and DAP of the cities were studied. The results showed that the Yangtze River Delta urban agglomeration has formed a multi-core and hierarchical network structure. Specifically, Shanghai was the core city facing the whole Yangtze River Delta, while Suzhou (Jiangsu), Nanjing, Hangzhou, Hefei, Wuxi, and Ningbo were the core cities facing the local area. There were several spatial development patterns including “urban integration” and “core-periphery” patterns. For example, the population flow connection between Shanghai and Suzhou (Jiangsu) showed that there was an obvious urban integration development mode. The population flow connections between Hangzhou and Shaoxing, Wuxi and Changzhou showed a kind of primary urban integration development patterns, while that between Hefei and Lu’an presented a significant core-periphery development model. The connection between Shanghai, Wuxi, and Ningbo and some cities with population diffusion revealed that there was a development model of “strong core-general core-periphery”. According to the results of DAC, DAP, and the population hinterlands, there were 7 different development types of the 41 cities in this region. The population hinterlands of core cities were generally overlapped and competed. For example, the population hinterlands of Shanghai covered the entire region, and those of Soochow and Nanjing were mainly in Jiangsu and some cities in Anhui Province. The population hinterlands of Hangzhou mainly covered cities in the northern Zhejiang and southern Anhui. Generally, the migration of people from edge cities, such as Lu’an, Huainan, Yancheng, and Quzhou, tends to go to more than one core city, which may lead to fierce competitions among core cities, such as Shanghai, Suzhou (Jiangsu), Nanjing, and Hangzhou. Correlation analysis showed that the city’s economy, administrative level, employment opportunities and income level had great impacts on the DAC and DAP of one city, and the accessibility had some impacts on the DAP of the cities. The study further summarized the spatial structure and development characteristics of the directed urban network, and could provide supports for achieving a high-quality and coordinated development of the Yangtze River Delta urban agglomeration. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
陈肖飞, 杨洁辉, 王恩儒, 等. 基于汽车产业供应链体系的中国城市网络特征研究[J]. 地理研究, 2020, 39(2):370-383.
结构特征与权力等级是城市网络的重要要素。基于“产业-区位”视角,通过对2012年中国汽车产业供应链体系分析,凝炼中国城市网络特征。研究发现:① 基于汽车产业供应链体系的中国城市网络表现出明显的“低密度-多核心、高聚类-少趋同”的结构特征。② 城市网络的结构特征与权力等级存在显著“悖论”,即城市节点的网络地位不仅取决于链接城市的数量,还需考虑关联网络的空间属性和资本容量。③ 城市网络权力等级中既包括上海、重庆等领导核心城市,也包括广州、芜湖等中心集约城市和苏州、成都等权力门户城市,说明转变中心性与转变控制力不仅能有效揭示中国城市网络节点的真实权力属性,也更符合经济现象的地理空间非均衡规律。④ 重庆、上海、天津、长春、北京、十堰等领导核心城市并未完全锁定中国六大汽车产业集聚区,其中长三角地区网络权力最突出,珠三角地区网络权力最弱。
Structural characteristics and power hierarchy are important elements of urban networks. This paper studied the selection of China's automobile industry supply chain system in 2012 by using "China automobile industry enterprise information Daquan", "China industrial enterprise database" and "China automobile supplier network", and analyzed the characteristics of China's urban network from the perspective of "industry-location". The results showed that: Firstly, based on the supply chain system of automobile industry, China's urban network showed obvious structural characteristics of "low density, multi-core, high clustering, less convergence". Secondly, there existed a "paradox" between the structural characteristics and power levels of cities in the urban network, which means that the network status depended not only on the number of linked cities, but also on the spatial attributes and capital capacity of the associated networks. Thirdly, the urban network power level included not only the leading core cities such as Shanghai and Chongqing, but also the central intensive cities such as Guangzhou and Wuhu, and the power gateway cities such as Suzhou and Chengdu. The result suggested that the "alter-based centrality" and "alter-based power" could not only effectively reveal the real power attribute of China's urban network nodes, but also kept more in line with the unbalanced law of geographical space of economic phenomena. Fourth, leading core cities, including Chongqing, Shanghai, Tianjin, Changchun, Beijing, Shiyan, etc., did not completely take over the six major automotive agglomerations in China, among which Yangtze River Delta region was at the highest level in the power hierarchy whereas the Pearl River Delta region was at the bottom. Finally, it should be noted that the supply chain system of automobile industry was only a special situation between "urban agents", and its research conclusions could not be infinitely copied and promoted, and could not replace the relevant conclusions of other factor flows. {{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |